6,007 research outputs found

    Hamilton-Jacobi method for Domain Walls and Cosmologies

    Full text link
    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of adS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.Comment: 18 pages; v2: typos corrected, one ref added, version to appear in PR

    Positivity of energy for asymptotically locally AdS spacetimes

    Full text link
    We derive necessary conditions for the spinorial Witten-Nester energy to be well-defined for asymptotically locally AdS spacetimes. We find that the conformal boundary should admit a spinor satisfying certain differential conditions and in odd dimensions the boundary metric should be conformally Einstein. We show that these conditions are satisfied by asymptotically AdS spacetimes. The gravitational energy (obtained using the holographic stress energy tensor) and the spinorial energy are equal in even dimensions and differ by a bounded quantity related to the conformal anomaly in odd dimensions.Comment: 36 pages, 1 figure; minor corrections, JHEP versio

    High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Get PDF
    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation

    Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6

    Full text link
    We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disorder distributions that allow for weights of either sign. We are interested in in the full ensemble of loops with negative weight, i.e. non-trivial (system spanning) loops as well as topologically trivial ("small") loops. The NWP phenomenon refers to the disorder driven proliferation of system spanning loops of total negative weight. While previous studies where focused on the latter loops, we here put under scrutiny the ensemble of small loops. Our aim is to characterize -using this extensive and exhaustive numerical study- the loop length distribution of the small loops right at and below the critical point of the hypercubic setups by means of two independent critical exponents. These can further be related to the results of previous finite-size scaling analyses carried out for the system spanning loops. For the numerical simulations we employed a mapping of the NWP model to a combinatorial optimization problem that can be solved exactly by using sophisticated matching algorithms. This allowed us to study here numerically exact very large systems with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174

    Holographic Coulomb branch vevs

    Full text link
    We compute holographically the vevs of all chiral primary operators for supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find exact agreement with the corresponding field theory computation. Using the dictionary between 10d geometries and field theory developed to extract these vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM by certain irrelevant operators.Comment: 16 pages, v2 corrections in appendi

    Learning Points and Routes to Recommend Trajectories

    Full text link
    The problem of recommending tours to travellers is an important and broadly studied area. Suggested solutions include various approaches of points-of-interest (POI) recommendation and route planning. We consider the task of recommending a sequence of POIs, that simultaneously uses information about POIs and routes. Our approach unifies the treatment of various sources of information by representing them as features in machine learning algorithms, enabling us to learn from past behaviour. Information about POIs are used to learn a POI ranking model that accounts for the start and end points of tours. Data about previous trajectories are used for learning transition patterns between POIs that enable us to recommend probable routes. In addition, a probabilistic model is proposed to combine the results of POI ranking and the POI to POI transitions. We propose a new F1_1 score on pairs of POIs that capture the order of visits. Empirical results show that our approach improves on recent methods, and demonstrate that combining points and routes enables better trajectory recommendations

    Matching Kasteleyn Cities for Spin Glass Ground States

    Get PDF
    As spin glass materials have extremely slow dynamics, devious numerical methods are needed to study low-temperature states. A simple and fast optimization version of the classical Kasteleyn treatment of the Ising model is described and applied to two-dimensional Ising spin glasses. The algorithm combines the Pfaffian and matching approaches to directly strip droplet excitations from an excited state. Extended ground states in Ising spin glasses on a torus, which are optimized over all boundary conditions, are used to compute precise values for ground state energy densities.Comment: 4 pages, 2 figures; minor clarification
    • …
    corecore