244 research outputs found

    Additive Manufacturing Technology for High Performances Feed Horn

    Get PDF
    In this work the design and manufacturing through selective laser melting technology of single-band dual circular feed-system operating in Ka-band is reported. In the feed design an AM oriented architecture has been employed. The measured performances confirms the good manufacturing of the system that satisfies very stringent requirements in terms of polarization purity

    Congenital chloride diarrhea clinical features and management: a systematic review

    Get PDF
    Introduction: Congenital chloride diarrhea (CLD) is a rare autosomal recessive disorder characterized by watery diarrhea with a high level of fecal Cl−, metabolic alkalosis, and electrolyte alterations. Several intestinal and extraintestinal complications and even death can occur. An optimal knowledge of the clinical features and best therapeutic strategies is mandatory for an effective management. Methods: Articles published between 1 January 1965 and 31 December 2019, reported in PUBMED and EMBASE, were evaluated for a systematic review analyzing four categories: anamnestic features, clinical features, management, and follow-up strategies. Results: Fifty-seven papers reporting information on 193 CLD patients were included. The most common anamnestic features were positive family anamnesis for chronic diarrhea (44.4%), consanguinity (75%), polyhydramnios (98.3%), preterm delivery (78.6%), and failure to pass meconium (60.7%). Mean age at diarrhea onset was 6.63 days. Median diagnostic delay was 60 days. Prenatal diagnosis, based on molecular analysis, was described in 40/172 (23.3%). All patients received NaCl/KCl-substitutive therapy. An improvement of diarrhea during adulthood was reported in 91.3% of cases. Failure to thrive (21.6%) and chronic kidney disease (17.7%) were the most common complications. Conclusions: This analysis of a large population suggests the necessity of better strategies for the management of CLD. A close follow-up and a multidisciplinary approach is mandatory to manage this condition characterized by heterogeneous and multisystemic complications. Impact: In this systematic review, we describe data regarding anamnestic features, clinical features, management, and follow-up of CLD patients obtained from the largest population of patients ever described to date.The results of our investigation could provide useful insights for the diagnostic approach and the management of this condition

    HCV antiviral resistance: The impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase

    Get PDF
    The high prevalence of the disease caused by hepatitis C virus (HCV) and the limited efficacy of interferon-based therapies have stimulated the search for safer and more effective drugs. The development of inhibitors of the HCV NS5B RNA polymerase represents a promising strategy for identifying novel anti-HCV therapeutics. However, the high genetic diversity, mutation rate and turnover of HCV are expected to favour the emergence of drug resistance, limiting the clinical usefulness of polymerase inhibitors. Thus, the characterization of the drug-resistance profile of these antiviral agents is considered crucial for identifying the inhibitors with a higher probability of clinical success. In the absence of an efficient in vitro infection system, HCV sub-genomic replicons have been used to study viral resistance to both nucleoside and non-nucleoside NS5B inhibitors. While these studies suggest that drug-resistant viruses are likely to evolve in vivo, they provide a wealth of information that should help in the identification of inhibitors with improved and distinct resistance profiles that might be used for combination therapy

    Spiro-containing derivatives show antiparasitic activity against trypanosoma brucei through inhibition of the trypanothione reductase enzyme

    Get PDF
    Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypa-nothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypano-soma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461’) and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus represent-ing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections

    A prototype model for evaluating SKA-LOW station calibration

    Get PDF
    The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called “station”), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array

    Characteristic Mode Analysis of Multi-Octave Asymmetric Dipoles

    Get PDF
    This paper discusses the impedance and front-to-back ratio performance of asymmetric dipoles. These parameters are very important when the antennas are placed over a conductive ground plane and should operate over multi-octave frequency bands. The operation of these antennas is usually described relying on analogies with more classical structures such as symmetric dipoles and tapered slot antennas. To provide a solid theoretical background to this intuition, this work presents the application of characteristic mode analysis to multi-octave dipole antennas. Firstly, a brief review of the main characteristic mode content is presented. Then, characteristic mode analysis is applied to three antenna concepts to emphasize how their geometry impacts on the relevant figures of merit. This allows to draw some conclusions on the achievable performance by different designs

    Comparison between Measured and Simulated Antenna Patterns for a LOFAR LBA array

    Get PDF
    A UAV-based system has been employed for a measurement campaign on a station of the radio telescope LOFAR to characterize the individual Low Band Antenna patterns. The experimental set-up has been then simulated with a full-wave software and numerical embedded element patterns have been compared to the measured results. A statistical analysis of the differences between the two data sets has been finally carried out to estimate the accuracy of the electromagnetic model

    First Results on the Experimental Validation of the SKA-low Prototypes Deployed in Australia Using an Airborne Test Source

    Get PDF
    As the Square Kilometre Array progresses toward the construction phase, the first prototypes of the low-frequency instrument have been deployed in Australia. To support such a crucial phase, a measurement campaign took place in the Murchison Radio-astronomy Observatory area in order to validate the electromagnetic models of the arrays by characterizing the embedded-element patterns and the array beams. A set of significant results is shown in this contribution

    Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry

    Get PDF
    Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry

    A prototype model for evaluating SKA-LOW station calibration

    Get PDF
    The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called "station"), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array
    • 

    corecore