17 research outputs found

    Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab

    No full text
    Abstract Background Previous studies have suggested that elevated neutrophil-to-lymphocyte ratio (NLR) is prognostic for worse outcomes in patients with a variety of solid cancers, including those treated with immune checkpoint inhibitors. Methods This was a retrospective analysis of 97 consecutive patients with stage IV melanoma who were treated with nivolumab. Baseline NLR and derived (d) NLR were calculated and, along with other characteristics, correlated with progression-free survival (PFS) and overall survival (OS) in univariate and multivariate analyses. The best cutoff values for NLR and dNLR were derived using Cutoff Finder software based on an R routine which optimized the significance of the split between Kaplan-Meier survival curves. Results In univariate analysis, increasing absolute neutrophil count (ANC), NLR, dNLR and lactate dehydrogenase (LDH) (continuous variables) were all significantly associated with OS. Only NLR (hazard ratio [HR] = 2.85; 95% CI 1.60–5.08; p < 0.0001) and LDH (HR = 2.51; 95% CI 1.36–4.64; p < 0.0001) maintained a significant association with OS in multivariate analysis. Patients with baseline NLR ≥5 had significantly worse OS and PFS than patients with NLR < 5, as did patients with baseline dNLR ≥3 versus < 3. Optimal cut-off values were ≥ 4.7 for NLR and ≥ 3.8 for dNLR. Using this ≥4.7 cut-off for NLR, the values for OS and PFS were overlapping to the canonical cut-off for values, and dNLR< 3.8 was also associated with better OS and PFS. Conclusion Both Neutrophil-to-lymphocyte ratio (NLR) and derived (d) NLR were associated with improved survival when baseline levels were lower than cut-off values. NLR and dNLR are simple, inexpensive and readily available biomarkers that could be used to help predict response to immunotherapy in patients with advanced melanoma

    The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection

    No full text
    SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection is associated, alongside with lung infection and respiratory disease, to cardiovascular dysfunction that occurs at any stage of the disease. This includes ischemic heart disease, arrhythmias, and cardiomyopathies. The common pathophysiological link between SARS-CoV-2 infection and the cardiovascular events is represented by coagulation abnormalities and disruption of factors released by endothelial cells, which contribute in maintaining the blood vessels into an anti-thrombotic state. Thus, early alteration of the functionality of endothelial cells, which may be found soon after SARS-CoV-2 infection, seems to represent the major target of a SARS CoV-2 disease state and accounts for the systemic vascular dysfunction that leads to a detrimental effect in terms of hospitalization and death accompanying the disease. In particular, the molecular interaction of SARS-CoV-2 with the ACE2 receptor located in the endothelial cell surface, either at the pulmonary and systemic level, leads to early impairment of endothelial function, which, in turn, is followed by vascular inflammation and thrombosis of peripheral blood vessels. This highlights systemic hypoxia and further aggravates the vicious circle that compromises the development of the disease, leading to irreversible tissue damage and death of people with SARS CoV-2 infection. The review aims to assess some recent advances to define the crucial role of endothelial dysfunction in the pathogenesis of vascular complications accompanying SARS-CoV-2 infection. In particular, the molecular mechanisms associated with the interaction of SARS CoV-2 with the ACE2 receptor located on the endothelial cells are highlighted to support its role in compromising endothelial cell functionality. Finally, the consequences of endothelial dysfunction in enhancing pro-inflammatory and pro-thrombotic effects of SARS-CoV-2 infection are assessed in order to identify early therapeutic interventions able to reduce the impact of the disease in high-risk patients

    The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection

    No full text
    SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection is associated, alongside with lung infection and respiratory disease, to cardiovascular dysfunction that occurs at any stage of the disease. This includes ischemic heart disease, arrhythmias, and cardiomyopathies. The common pathophysiological link between SARS-CoV-2 infection and the cardiovascular events is represented by coagulation abnormalities and disruption of factors released by endothelial cells, which contribute in maintaining the blood vessels into an anti-thrombotic state. Thus, early alteration of the functionality of endothelial cells, which may be found soon after SARS-CoV-2 infection, seems to represent the major target of a SARS CoV-2 disease state and accounts for the systemic vascular dysfunction that leads to a detrimental effect in terms of hospitalization and death accompanying the disease. In particular, the molecular interaction of SARS-CoV-2 with the ACE2 receptor located in the endothelial cell surface, either at the pulmonary and systemic level, leads to early impairment of endothelial function, which, in turn, is followed by vascular inflammation and thrombosis of peripheral blood vessels. This highlights systemic hypoxia and further aggravates the vicious circle that compromises the development of the disease, leading to irreversible tissue damage and death of people with SARS CoV-2 infection. The review aims to assess some recent advances to define the crucial role of endothelial dysfunction in the pathogenesis of vascular complications accompanying SARS-CoV-2 infection. In particular, the molecular mechanisms associated with the interaction of SARS CoV-2 with the ACE2 receptor located on the endothelial cells are highlighted to support its role in compromising endothelial cell functionality. Finally, the consequences of endothelial dysfunction in enhancing pro-inflammatory and pro-thrombotic effects of SARS-CoV-2 infection are assessed in order to identify early therapeutic interventions able to reduce the impact of the disease in high-risk patients

    The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and Pathophysiological Implications

    No full text
    The exchange of solutes between the blood and the nerve tissue is mediated by specific and high selective barriers in order to ensure the integrity of the different compartments of the nervous system. At peripheral level, this function is maintained by the Blood Nerve Barrier (BNB) that, in the presence, of specific stressor stimuli can be damaged causing the onset of neurodegenerative processes. An essential component of BNB is represented by the endothelial cells surrounding the sub-structures of peripheral nerves and increasing evidence suggests that endothelial dysfunction can be considered a leading cause of the nerve degeneration. The purpose of this review is to highlight the main mechanisms involved in the impairment of endothelial cells in specific diseases associated with peripheral nerve damage, such as diabetic neuropathy, erectile dysfunction and inflammation of the sciatic nerve

    The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans

    No full text
    The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota

    Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development

    No full text
    The maintenance of physiological levels of nitric oxide (NO) produced by eNOS represents a key element for vascular endothelial homeostasis. On the other hand, NO overproduction, due to the activation of iNOS under different stress conditions, leads to endothelial dysfunction and, in the late stages, to the development of atherosclerosis. Oxidized LDLs (oxLDLs) represent the major candidates to trigger biomolecular processes accompanying endothelial dysfunction and vascular inflammation leading to atherosclerosis, though the pathophysiological mechanism still remains to be elucidated. Here, we summarize recent evidence suggesting that oxLDLs produce significant impairment in the modulation of the eNOS/iNOS machinery, downregulating eNOS via the HMGB1-TLR4-Caveolin-1 pathway. On the other hand, increased oxLDLs lead to sustained activation of the scavenger receptor LOX-1 and, subsequently, to NFkB activation, which, in turn, increases iNOS, leading to EC oxidative stress. Finally, these events are associated with reduced protective autophagic response and accelerated apoptotic EC death, which activates atherosclerotic development. Taken together, this information sheds new light on the pathophysiological mechanisms of oxLDL-related impairment of EC functionality and opens new perspectives in atherothrombosis prevention

    Additional file 2: of Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab

    No full text
    Figure S1. Kaplan-Maier OS and PFS curves of melanoma patient treated with nivolumab. (A) Patients stratified according baseline median ANC as cutoff . Green line: ANC≥5.4; Blue line: ANC<5.4. (B) Patients stratified for PFS according baseline median ANC as cut-off . Green line: ANC≥5.4; Blue line: ANC<5.4. Figure S2. Kaplan-Maier OS and PFS curves of melanoma patient treated with nivolumab using optimal cutoff for derived neutrophils-to lymphocyte ratio (dNLR). (A)) Patients stratified according baseline dNLR. Green line: dNLR≥3.8; Blue line: dNLR<3.8. (DOCX 168 kb
    corecore