120 research outputs found

    Measurement of the ortho-positronium confinement energy in mesoporous thin films

    Full text link
    In this paper, we present measurements of the ortho-positronium emission energy in vacuum from mesoporous films using the time of flight technique. We show evidence of quantum mechanical confinement in the mesopores that defines the minimal energy of the emitted Ps. Two samples with different effective pore sizes, measured with positron annihilation lifetime spectroscopy, are compared for the data collected in the temperature range 50-400 K. The sample with smaller pore size exhibits a higher minimal energy (73±73\pm5 meV), compared to the sample with bigger pores (48±48\pm5 meV), due to the stronger confinement. The dependence of the emission energy with the temperature of the target is modeled as ortho-positronium being confined in rectangular boxes in thermodynamic equilibrium with the sample. We also measured that the yield of positronium emitted in vacuum is not affected by the temperature of the target.Comment: 8 pages, 9 figures *Added references. * Corrected typos and Fig. 3 label. * Revised argument in section IV B abd C, results unchanged

    Muonium Lamb shift: theory update and experimental prospects

    Full text link
    We review the theory of the Lamb shift for muonium, provide an updated numerical value and present the prospects of the Mu-MASS collaboration at PSI to improve upon their recent measurement. Due to its smaller nuclear mass, the contributions of the higher-order recoil corrections (160kHz level) and nucleus self-energy 40kHz level) are enhanced for muonium compared to hydrogen where those are below the level of the latest measurement performed by Hessels et al. and thus could not be tested yet. The ongoing upgrades to the Mu-MASS setup will open up the possibility to probe these contributions and improve the sensitivity of this measurement to searches for new physics in the muonic sector.Comment: 8 page

    Prospects for studies of the free fall and gravitational quantum states of antimatter

    Get PDF
    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium and antihydrogen. Among those, the project GBAR in CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we review the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.Comment: This work reviews contributions made at the GRANIT 2014 workshop on prospects for the observation of the free fall and gravitational quantum states of antimatte

    Pulsed CW laser for long-term spectroscopic measurements at high power in deep-UV

    Full text link
    We present a novel technique for in-vacuum cavity-enhanced UV spectroscopy that allows nearly continuous measurements over several days, minimizing mirror degradation caused by high-power UV radiation. Our method relies on pulsing of the cavity's internal power, which increases the UV intensity to maximum only for short periods when the studied atom is within the cavity mode volume while keeping the average power low to prevent mirror degradation. Additionally, this method significantly decreases laser-induced background on charged particle detectors. The described 244 nm laser system is designed for 1S-2S two-photon CW spectroscopy of muonium in the Mu-MASS project. It was tested to provide intracavity powers above 20 W, requiring maintenance only a few times a day. The pulsing technique demonstrates minimal impact on the radiation frequency, with no observed shifts exceeding 15 kHz. Our approach represents a promising new technique for high-precision spectroscopy of atoms in harsh UV environments and demonstrates the feasibility of CW spectroscopy of muonium.Comment: 10 pages, 5 figure

    Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN

    Get PDF
    We report the first results on a direct search for a new 16.7 MeV boson (X) which could explain the anomalous excess of e+e− pairs observed in the excited 8Be∗ nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e−Z→e−ZX by a 100 GeV e−beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e+e− pair. With 5.4×1010 electrons on target, no evidence for such decays was found, allowing us to set first limits on the X−e− coupling in the range 1.3×10−4≲εe≲4.2×10−4 excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons (A′) from nonobservation of the decay A′→e+e−of the bremsstrahlung A′ with a mass ≲23  MeV

    Search for vector mediator of dark matter production in invisible decay mode

    Get PDF
    A search is performed for a new sub-GeV vector boson (A′) mediated production of dark matter (χ) in the fixed-target experiment, NA64, at the CERN SPS. The A′, called dark photon, can be generated in the reaction e−Z→e−ZA′ of 100 GeV electrons dumped against an active target followed by its prompt invisible decay A′→χ¯χ. The experimental signature of this process would be an event with an isolated electron and large missing energy in the detector. From the analysis of the data sample collected in 2016 corresponding to 4.3×1010 electrons on target no evidence of such a process has been found. New stringent constraints on the A′ mixing strength with photons, 10−5≲ε≲10−2, for the A′ mass range mA′≲1  GeV are derived. For models considering scalar and fermionic thermal dark matter interacting with the visible sector through the vector portal the 90% C.L. limits 10−11≲y≲10−6on the dark-matter parameter y=ε2αD(mχmA′)4 are obtained for the dark coupling constant αD=0.5and dark-matter masses 0.001≲mχ≲0.5  GeV. The lower limits αD≳10−3 for pseudo-Dirac dark matter in the mass region mχ≲0.05  GeV are more stringent than the corresponding bounds from beam dump experiments. The results are obtained by using exact tree level calculations of the A′production cross sections, which turn out to be significantly smaller compared to the one obtained in the Weizsäcker-Williams approximation for the mass region mA′≳0.1  Ge

    Mesoporous silica films with varying porous volume fraction: direct correlation between ortho-positronium annihilation decay and escape yield into vacuum

    Get PDF
    accepted for publication in Applied Physics LettersThe behavior of ortho-positronium (o-Ps) in mesoporous silica films implanted with low–energy positrons has been studied as a function of the film porous volume fraction. A lifetime spectrometer allowed determination of o-Ps annihilation decay both inside and outside of the film. A kinetic model is introduced that permits the determination of the yield and rate of escape of o-Ps into vacuum as well as the annihilation decay rate of the trapped o-Ps in the film. It is shown that these undergo a sudden change at a threshold porous volume fraction, above which the o-Ps escape rate to vacuum varies linearly with volume fraction

    Positronium reemission yield from mesostructured silica films

    Get PDF
    The reemission yield of ortho-positronium (o-Ps) into vacuum outside mesoporous silica films on glass is measured in reflection mode with a specially designed lifetime (LT) spectrometer. Values as high as 40% are found. The intensity of the 142 ns vacuum LT is recorded as a function of reemission depth. The LT depth profiling is correlated to the 2gamma and 3gamma energy ones to determine the annihilation characteristics inside the films. Positron lifetime in capped films is used to determine the pore size. For the first time, a set of consistent fingerprints for Ps annihilation, o-Ps reemission into vacuum, and pore size, is directly determined in CTACl-TEOS films

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years
    corecore