35 research outputs found

    The role of HMG-CoA reductase inhibition in endothelial dysfunction and inflammation

    Get PDF
    Statin-induced inhibition of HMG-CoA reductase reduces cholesterol production and prevents the formation of many non-steroidal isoprenoid compounds, such as farnesylpyrophosphate and geranylgeranylpyrophosphate, that act as lipid attachments for the post-translational modification of various proteins, including the G-proteins and transcription factors involved in a number of cell processes. However, the blockade of isoprenylation elicited by statin treatment also has biological effects on cell function that go beyond the decrease in cholesterol synthesis: these are the so-called “pleiotropic” effects that mainly relate to vascular function. Endothelial dysfunction is an independent predictor of cardiovascular events that correlates with inflammation markers/mediators and robust predictors of cardiovascular diseases such as increased high-sensitivity C-reactive protein levels. The results of in vivo and in vitro studies indicate that the statins have beneficial effects unrelated to cholesterol lowering, such as improving endothelial function, increasing myocardial perfusion, and enhancing the availability of nitric oxide. This review describes the pleiotropic effects of statins that may be involved in modulating/preventing endothelial dysfunction and inflammatory processes, as well as the cellular and molecular mechanisms through which they improve endothelial function

    Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat

    Get PDF
    UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-ÎșB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-ÎșB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP

    Terutroban, a Thromboxane/Prostaglandin Endoperoxide Receptor Antagonist, Increases Survival in Stroke-Prone Rats by Preventing Systemic Inflammation and Endothelial Dysfunction: Comparison with Aspirin and Rosuvastatin

    Get PDF
    ABSTRACT This study investigated the efficacy of terutroban, a specific thromboxane/prostaglandin endoperoxide receptor antagonist, on stroke incidence in spontaneously hypertensive strokeprone rats (SHRSP). The effects of terutroban were compared with those of aspirin, another antiplatelet agent, and rosuvastatin, known to exert end-organ protection in SHRSP. Saltloaded male SHRSP were treated orally once a day with vehicle, terutroban (30 mg/kg/day), aspirin (60 mg/kg/day), or rosuvastatin (10 mg/kg/day). Compared with vehicle, and regardless of any effect on blood pressure or serum thromboxane B 2 levels, terutroban significantly increased survival (p Ϝ 0.001) as a consequence of a delayed brain lesion occurrence monitored by magnetic resonance imaging (p Ϝ 0.001), and a delayed increase of proteinuria (p Ϝ 0.001). Terutroban decreased cerebral mRNA transcription of interleukin-1␀, transforming growth factor-␀, and monocyte chemoattractant protein-1 after 6 weeks of dietary treatment. Terutroban also prevented the accumulation of urinary acute-phase proteins at high molecular weight, identified as markers of systemic inflammation, and assessed longitudinally by one-dimensional electrophoresis. Terutroban also has protective effects on the vasculature as suggested by the preservation of endothelial function and endothelial nitric-oxide synthase expression in isolated carotid arteries. These effects are similar to those obtained with rosuvastatin, and superior to those of aspirin. Terutroban increases survival in SHRSP by reducing systemic inflammation as well as preserving endothelial function. These data support clinical development of terutroban in the prevention of cerebrovascular and cardiovascular complications of atherothrombosis. Several clinical and experimental studies Spontaneously hypertensive stroke-prone rats (SHRSP) develop hypertension and proteinuria and die after the onset Article, publication date, and citation information can be found a

    The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair

    Get PDF
    Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as “danger signals” to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD4), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD4 promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a “sensor” that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis

    Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state

    Get PDF
    Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory/protective state of microglia for the development of novel PET tracers.Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues.Results: Here we provide evidence that P2RYI2 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-II labeled tracer targeting P2RYI2, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient.Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.</div

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    corecore