397 research outputs found

    The lifecycle of provenance metadata and its associated challenges and opportunities

    Full text link
    This chapter outlines some of the challenges and opportunities associated with adopting provenance principles and standards in a variety of disciplines, including data publication and reuse, and information sciences

    TAPER: query-aware, partition-enhancement for large, heterogenous, graphs

    Full text link
    Graph partitioning has long been seen as a viable approach to address Graph DBMS scalability. A partitioning, however, may introduce extra query processing latency unless it is sensitive to a specific query workload, and optimised to minimise inter-partition traversals for that workload. Additionally, it should also be possible to incrementally adjust the partitioning in reaction to changes in the graph topology, the query workload, or both. Because of their complexity, current partitioning algorithms fall short of one or both of these requirements, as they are designed for offline use and as one-off operations. The TAPER system aims to address both requirements, whilst leveraging existing partitioning algorithms. TAPER takes any given initial partitioning as a starting point, and iteratively adjusts it by swapping chosen vertices across partitions, heuristically reducing the probability of inter-partition traversals for a given pattern matching queries workload. Iterations are inexpensive thanks to time and space optimisations in the underlying support data structures. We evaluate TAPER on two different large test graphs and over realistic query workloads. Our results indicate that, given a hash-based partitioning, TAPER reduces the number of inter-partition traversals by around 80%; given an unweighted METIS partitioning, by around 30%. These reductions are achieved within 8 iterations and with the additional advantage of being workload-aware and usable online.Comment: 12 pages, 11 figures, unpublishe

    Loom: Query-aware Partitioning of Online Graphs

    Full text link
    As with general graph processing systems, partitioning data over a cluster of machines improves the scalability of graph database management systems. However, these systems will incur additional network cost during the execution of a query workload, due to inter-partition traversals. Workload-agnostic partitioning algorithms typically minimise the likelihood of any edge crossing partition boundaries. However, these partitioners are sub-optimal with respect to many workloads, especially queries, which may require more frequent traversal of specific subsets of inter-partition edges. Furthermore, they largely unsuited to operating incrementally on dynamic, growing graphs. We present a new graph partitioning algorithm, Loom, that operates on a stream of graph updates and continuously allocates the new vertices and edges to partitions, taking into account a query workload of graph pattern expressions along with their relative frequencies. First we capture the most common patterns of edge traversals which occur when executing queries. We then compare sub-graphs, which present themselves incrementally in the graph update stream, against these common patterns. Finally we attempt to allocate each match to single partitions, reducing the number of inter-partition edges within frequently traversed sub-graphs and improving average query performance. Loom is extensively evaluated over several large test graphs with realistic query workloads and various orderings of the graph updates. We demonstrate that, given a workload, our prototype produces partitionings of significantly better quality than existing streaming graph partitioning algorithms Fennel and LDG

    Design and evaluation of a genomics variant analysis pipeline using GATK Spark tools

    Full text link
    Scalable and efficient processing of genome sequence data, i.e. for variant discovery, is key to the mainstream adoption of High Throughput technology for disease prevention and for clinical use. Achieving scalability, however, requires a significant effort to enable the parallel execution of the analysis tools that make up the pipelines. This is facilitated by the new Spark versions of the well-known GATK toolkit, which offer a black-box approach by transparently exploiting the underlying Map Reduce architecture. In this paper we report on our experience implementing a standard variant discovery pipeline using GATK 4.0 with Docker-based deployment over a cluster. We provide a preliminary performance analysis, comparing the processing times and cost to those of the new Microsoft Genomics Services

    Taverna Workflows: Syntax and Semantics

    No full text
    This paper presents the formal syntax and the operational semantics of Taverna, a workflow management system with a large user base among the e-Science community. Such formal foundation, which has so far been lacking, opens the way to the translation between Taverna workflows and other process models. In particular, the ability to automatically compile a simple domain-specific process description into Taverna facilitates its adoption by e-scientists who are not expert workflow developers. We demonstrate this potential through a practical use case

    Data trajectories: tracking reuse of published data for transitive credit attribution

    Get PDF
    The ability to measure the use and impact of published data sets is key to the success of the open data/open science paradigm. A direct measure of impact would require tracking data (re)use in the wild, which is difficult to achieve. This is therefore commonly replaced by simpler metrics based on data download and citation counts. In this paper we describe a scenario where it is possible to track the trajectory of a dataset after its publication, and show how this enables the design of accurate models for ascribing credit to data originators. A Data Trajectory (DT) is a graph that encodes knowledge of how, by whom, and in which context data has been re-used, possibly after several generations. We provide a theoretical model of DTs that is grounded in the W3C PROV data model for provenance, and we show how DTs can be used to automatically propagate a fraction of the credit associated with transitively derived datasets, back to original data contributors. We also show this model of transitive credit in action by means of a Data Reuse Simulator. In the longer term, our ultimate hope is that credit models based on direct measures of data reuse will provide further incentives to data publication. We conclude by outlining a research agenda to address the hard questions of creating, collecting, and using DTs systematically across a large number of data reuse instances in the wild

    Building Rule Hierarchies for Efficient Logical Rule Learning from Knowledge Graphs

    Full text link
    Many systems have been developed in recent years to mine logical rules from large-scale Knowledge Graphs (KGs), on the grounds that representing regularities as rules enables both the interpretable inference of new facts, and the explanation of known facts. Among these systems, the walk-based methods that generate the instantiated rules containing constants by abstracting sampled paths in KGs demonstrate strong predictive performance and expressivity. However, due to the large volume of possible rules, these systems do not scale well where computational resources are often wasted on generating and evaluating unpromising rules. In this work, we address such scalability issues by proposing new methods for pruning unpromising rules using rule hierarchies. The approach consists of two phases. Firstly, since rule hierarchies are not readily available in walk-based methods, we have built a Rule Hierarchy Framework (RHF), which leverages a collection of subsumption frameworks to build a proper rule hierarchy from a set of learned rules. And secondly, we adapt RHF to an existing rule learner where we design and implement two methods for Hierarchical Pruning (HPMs), which utilize the generated hierarchies to remove irrelevant and redundant rules. Through experiments over four public benchmark datasets, we show that the application of HPMs is effective in removing unpromising rules, which leads to significant reductions in the runtime as well as in the number of learned rules, without compromising the predictive performance
    corecore