487 research outputs found

    Adhesion, mobility and aggregation of nanoclusters at surfaces: Ni and Ag on Si, HOPG and graphene

    Get PDF
    Abstract: An experimental investigation of Ag and Ni nanoparticles (NPs) deposited on Silicon with its native oxide, on highly oriented pyrolytic graphite and on graphene flakes is reported. The NPs were physically synthesized with a magnetron based gas aggregation source and the produced beam was mass-filtered and deposited in vacuum on the substrates. The study was concentrated on the morphology for the different cases, shedding some light on the interaction of pre-formed NPs with surfaces, a crucial aspect both of technological and scientific relevance. The nature of adhesion can be strongly influenced by the intrinsic properties of the surface (like for instance the energetics of interaction between the NP surface atoms and the first layers of the substrate) and/or the extrinsic properties, like the presence of defects, step edges, impurities and other irregularities. After adhesion, the NPs mobility and their mutual interaction are very relevant. In this work, the study was concentrated on NP/surface morphology, by using atomic force microscopy, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Article highlights: Morphology of physically synthesized metal Nano-Particles (NPs) on Si, HOPG and Graphene was investigated. The NPs were pure Ag and Ni. Coalescence, diffusion and self-aggregation and preferential adhesion were observed, with possible applications in sensor technology.Possible explanations are: NP softness, NP/surface bonding interaction and presence of contaminant species molecules between NP

    Adaptive-Attentive Geolocalization From Few Queries: A Hybrid Approach

    Get PDF
    We tackle the task of cross-domain visual geo-localization, where the goal is to geo-localize a given query image against a database of geo-tagged images, in the case where the query and the database belong to different visual domains. In particular, at training time, we consider having access to only few unlabeled queries from the target domain. To adapt our deep neural network to the database distribution, we rely on a 2-fold domain adaptation technique, based on a hybrid generative-discriminative approach. To further enhance the architecture, and to ensure robustness across domains, we employ a novel attention layer that can easily be plugged into existing architectures. Through a large number of experiments, we show that this adaptive-attentive approach makes the model robust to large domain shifts, such as unseen cities or weather conditions. Finally, we propose a new large-scale dataset for cross-domain visual geo-localization, called SVOX

    Neuromyelitis optica spectrum disorders associated with systemic sclerosis: a case report and literature review

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) afecting predominantly the spinal cord, brainstem, and optic nerves [1]. NMOSD may be associated with a variety of immunemediated disorders, such as systemic lupus erythematosus, Sjögren syndrome, and other organ-specifc autoimmune diseases [2], though accurate information about their prevalence is not available [3]. Systemic sclerosis (SSc) is characterized by vascular alterations, activation of the immune system, and tissue fbrosis [4]. Only a few cases of coexisting systemic sclerosis (SSc) and NMOSD are described [1, 5–9]. We report a case of an NMOSD AQP4-IgG antibodypositive patient associated with SSc and a review of the available evidence of the relationship between these autoimmune disease

    Effects of processing on polyphenolic and volatile composition and fruit quality of clery strawberries

    Get PDF
    Strawberries belonging to cultivar Clery (Fragaria x ananassa (Duchesne ex Weston)), cultivated in central Italy were subjected to a multi‐methodological experimental study. Fresh and defrosted strawberries were exposed to different processing methods, such as homogenization, thermal and microwave treatments. The homogenate samples were submitted to CIEL*a*b* color analysis and Head‐Space GC/MS analysis to determine the impact of these procedures on phytochemical composition. Furthermore, the corresponding strawberry hydroalcoholic extracts were further analyzed by HPLC‐DAD for secondary metabolites quantification and by means of spectrophotometric in vitro assays to evaluate their total phenolic and total flavonoid contents and antioxidant activity. These chemical investigations confirmed the richness in bioactive metabolites supporting the extraordinary healthy potential of this fruit as a food ingredient, as well as functional food, highlighting the strong influence of the processing steps which could negatively impact on the polyphenol composition. Despite a more brilliant red color and aroma preservation, nonpasteurized samples were characterized by a lower content of polyphenols and antioxidant activity with respect to pasteurized samples, as also suggested by the PCA analysis of the collected data

    Predictors of unemployment status in people with relapsing multiple sclerosis: a single center experience

    Get PDF
    Background: Multiple sclerosis (MS) is the most common cause of nontraumatic chronic neurological disability affecting young adults during their crucial employment years. Objectives: To evaluate patients and disease related factors associated to unemployment in a cohort of relapsing–remitting (RR) MS patients. Methods: We included RRMS patients with a follow-up of at least 1 year. We collected data about years of school education and employment status. Patients underwent a neuropsychological evaluation using the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Demographic and clinical predictors of unemployment were assessed through a multivariable stepwise logistic regression model. Results: We evaluated 260 consecutive RRMS patients. Employed patients were less frequently female (68.4% vs 83.3%, p = 0.006), less disabled (median Expanded Disability Status Scale (EDSS) score: 2.0 (0–7.0) vs 2.5 (0–7.5), p < 0.001), with more years of school education (mean ± standard deviation (SD), years: 13.74 ± 0.30 vs 10.86 ± 3.47, p < 0.001). Female sex and a higher EDSS score resulted associated with a greater risk of unemployment (OR 3.510, 95% CI 1.654–7.448, p = 0.001; OR 1.366, 95% CI 1.074–1.737, p = 0.011, respectively), whereas a greater number of years of schooling and current disease-modifying therapy exposure resulted protective factors (OR 0.788, 95% CI 0.723–0.858, p < 0,001; OR 0.414, 95% CI 0.217–0.790, p = 0.008, respectively). Conclusions: Understanding work is pervasively influenced by consequences of MS, we confirmed the impact of demographic, physical, and cognitive factors on employment status in RRMS patients

    Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds

    Full text link
    We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscopies. The complementary surface/bulk probing depth, and the elemental and chemical sensitivity of these techniques allows resolving the intrinsic electronic structure of each element and correlating it with the local structure, which has been probed by extended-x-ray absorption fine structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+) initial state configuration for Cerium and an effective valence-band-to-4f charge-transfer screening of the core hole. The spectra also reveal the presence of a small Ce f0 initial state configuration, which we assign to the occurrence of an intermediate valence state. The data reveal a reasonably good agreement with the partial density of states as obtained in standard density functional calculations over a large energy range. Implications for the electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.

    Ag/mgo nanoparticles via gas aggregation nanocluster source for perovskite solar cell engineering

    Get PDF
    Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front electrode of a monolithic perovskite-based solar cell (PSC). Herein, the Ag NP growth through magnetron sputtering and gas aggregation, subsequently covered with MgO ultrathin layers, is fully characterized in terms of structural and morphological properties while thermal stability and endurance against air-induced oxidation are demonstrated in accordance with PSC manufacturing processes. Finally, once the NP coverage is optimized, the Ag/MgO engineered PSCs demonstrate an overall increase of 5% in terms of device power conversion efficiencies (up to 17.8%)

    Zno thin films growth optimization for piezoelectric application

    Get PDF
    The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode

    The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways

    Get PDF
    Summary The interleukin 17 (IL-17) cytokine and receptor family is central to antimicrobial resistance and inflammation in the lung. Mice lacking IL-17A, IL-17F, or the IL-17RA subunit were compared with wild-type mice for susceptibility to airway inflammation in models of infection and allergy. Signaling through IL-17RA was required for efficient microbial clearance and prevention of allergy; in the absence of IL-17RA, signaling through IL-17RC on epithelial cells, predominantly by IL-17F, significantly exacerbated lower airway Aspergillus or Pseudomonas infection and allergic airway inflammation. In contrast, following infection with the upper respiratory pathogen Staphylococcus aureus , the IL-17F/IL-17RC axis mediated protection. Thus, IL-17A and IL-17F exert distinct biological effects during pulmonary infection; the IL-17F/IL-17RC signaling axis has the potential to significantly worsen pathogen-associated inflammation of the lower respiratory tract in particular, and should be investigated further as a therapeutic target for treating pathological inflammation in the lung

    Ballistic nanofriction

    Full text link
    Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS) and nanomotors, increasingly involve large speeds, and rotations as well as translations of the moving surfaces; yet, the physics of high speed nanoscale friction is so far unexplored. Here, by simulating the motion of drifting and of kicked Au clusters on graphite - a workhorse system of experimental relevance -- we demonstrate and characterize a novel "ballistic" friction regime at high speed, separate from drift at low speed. The temperature dependence of the cluster slip distance and time, measuring friction, is opposite in these two regimes, consistent with theory. Crucial to both regimes is the interplay of rotations and translations, shown to be correlated in slow drift but anticorrelated in fast sliding. Despite these differences, we find the velocity dependence of ballistic friction to be, like drift, viscous
    corecore