17 research outputs found

    Preparation of hybrid samples for scanning electron microscopy (SEM) coupled to focused ion beam (FIB) analysis: A new way to study cell adhesion to titanium implant surfaces.

    Get PDF
    The study of the intimate connection occurring at the interface between cells and titanium implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging techniques have been developed and optimized in the last decades, but an optimal method has not been described yet. The combination of the scanning electron microscopy (SEM) with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the investigation of the relationship occurring at the interface between cells and biomaterials, including titanium. However, major caveats concerning the nature of the biological structures, which are not conductive materials, and the physico-chemical properties of titanium (i.e. color, surface topography), require a fine and accurate preparation of the sample before its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-titanium sample preparation before imaging by SEM-FIB. The concepts presented in this paper are also transferrable to other fields of biomaterials research

    Aptamer-Mediated Selective Protein Affinity to Improve Scaffold Biocompatibility

    Get PDF
    Protein adsorption on surfaces occurs shortly after scaffold insertion. This process is of pivotal importance to achieve therapeutic success in tissue engineering (TE), and favorable proteins should be adsorbed at the interface without unfolding to preserve their structure and function. Protein misfolding at the interface is a common phenomenon, which can impair cell adhesion and scaffold colonization. Many efforts have been done to improve scaffold biocompatibility by ameliorating protein adsorption, but with poor results. In the present chapter, we propose the use of a novel class of molecules, aptamers, to improve scaffold biocompatibility. Aptamers are small, single stranded oligonucleotides, which specifically bind to a target molecule: they work as antibodies, but without many of the drawbacks associated to the use of antibodies. We propose to immobilize aptamers on scaffolds to retain specific proteins, acting as docking points to guide cell activity. In particular, we show the results obtained by enriching different polymeric scaffolds with aptamers against human fibronectin, a naturally abundant protein in tissues, which plays a pivotal role in cell adhesion. We demonstrate that scaffold enrichment with aptamers lead to a better colonization of the substrate from cells. The results we obtained pave the way to the possibility of further investigating the role of aptamers as useful molecules to improve scaffold biocompatibility in the contest of tissue engineering

    Synthetic recovery of impulse propagation in myocardial infarction via silicon carbide semiconductive nanowires

    Get PDF
    : Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction

    PEDOT:PSS interfaces support the development of neuronal synaptic networks with reduced neuroglia response in vitro

    Get PDF
    The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) doped with different amounts of ethylene glycol (EG) with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy combined to single cell electrophysiology to assess the biocompatibility of PEDOT:PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus PEDOT:PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function

    Carbon Dots as a Sustainable New Platform for Organic Light Emitting Diode

    No full text
    Over the past 10 years, carbon dots (CDs) synthesized from renewable raw materials have received considerable attention in several fields for their unique photoluminescent properties. Moreover, the synthesis of CDs fully responds to the principles of circular chemistry and the concept of safe-by-design. This review will focus on the different strategies for incorporation of CDs in organic light-emitting devices (OLEDs) and on the study of the impact of CDs properties on OLED performance. The main current research outcomes and highlights are summarized to guide users towards full exploitation of these materials in optoelectronic applications

    Preparation of hybrid samples for scanning electron microscopy (SEM) coupled to focused ion beam (FIB) analysis: A new way to study cell adhesion to titanium implant surfaces

    No full text
    The study of the intimate connection occurring at the interface between cells and titanium implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging techniques have been developed and optimized in the last decades, but an optimal method has not been described yet. The combination of the scanning electron microscopy (SEM) with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the investigation of the relationship occurring at the interface between cells and biomaterials, including titanium. However, major caveats concerning the nature of the biological structures, which are not conductive materials, and the physico-chemical properties of titanium (i.e. color, surface topography), require a fine and accurate preparation of the sample before its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-titanium sample preparation before imaging by SEM-FIB. The concepts presented in this paper are also transferrable to other fields of biomaterials research

    Sub-Micropillar Spacing Modulates the Spatial Arrangement of Mouse MC3T3-E1 Osteoblastic Cells.

    Get PDF
    Surface topography is one of the main factors controlling cell responses on implanted devices and a proper definition of the characteristics that optimize cell behavior may be crucial to improve the clinical performances of these implants. Substrate geometry is known to affect cell shape, as cells try to optimize their adhesion by adapting to the irregularities beneath, and this in turn profoundly affects their activity. In the present study, we cultured murine calvaria MC3T3-E1 cells on surfaces with pillars arranged as hexagons with two different spacings and observed their morphology during adhesion and growth. Cells on these highly ordered substrates attached and proliferated effectively, showing a marked preference for minimizing the inter-pillar distance, by following specific pathways across adjacent pillars and displaying consistent morphological modules. Moreover, cell behavior appeared to follow tightly controlled patterns of extracellular protein secretion, which preceded and matched cells and, on a sub-cellular level, cytoplasmic orientation. Taken together, these results outline the close integration of surface features, extracellular proteins alignment and cell arrangement, and provide clues on how to control and direct cell spatial order and cell morphology by simply acting on inter-pillar spacing

    CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer

    No full text
    We report on the synthesis and characterization of a composite nanostructure based on the coupling of cerium fluoride (CeF3) and zinc oxide (ZnO) for applications in self-lighted photodynamic therapy. Self-lighted photodynamic therapy is a novel approach for the treatment of deep cancers by low doses of X-rays. CeF3 is an efficient scintillator: when illuminated by X-rays it emits UV light by fluorescence at 325 nm. In this work, we simulate this effect by exciting directly CeF3 fluorescence by UV radiation. ZnO is photo-activated in cascade, to produce reactive oxygen species. This effect was recently demonstrated in a physical mixture of distinct nanoparticles of CeF3 and ZnO [Radiat. Meas. (2013) 59:139–143]. Oxide surface provides a platform for rational functionalization, e.g., by targeting molecules for specific tumors. Our composite nanostructure is stable in aqueous media with excellent optical coupling between the two components; we characterize its uptake and its good cell viability, with very low intrinsic cytotoxicity in dark

    SiO<sub>2</sub>/SiC Nanowire Surfaces as a Candidate Biomaterial for Bone Regeneration

    No full text
    Tissue engineering (TE) and nanomedicine require devices with hydrophilic surfaces to better interact with the biological environment. This work presents a study on the wettability of cubic silicon-carbide-based (SiC) surfaces. We developed four cubic silicon-carbide-based epitaxial layers and three nanowire (NW) substrates. Sample morphologies were analyzed, and their wettabilities were quantified before and after a hydrogen plasma treatment to remove impurities due to growth residues and enhance hydrophilicity. Moreover, sample biocompatibility has been assessed with regard to L929 cells. Our results showed that core–shell nanowires (SiO2/SiC NWs), with and without hydrogen plasma treatment, are the most suitable candidate material for biological applications due to their high wettability that is not influenced by specific treatments. Biological tests underlined the non-toxicity of the developed biomaterials with regard to murine fibroblasts, and the proliferation assay highlighted the efficacy of all the surfaces with regard to murine osteoblasts. In conclusion, SiO2/SiC NWs offer a suitable substrate to develop platforms and membranes useful for biomedical applications in tissue engineering due to their peculiar characteristics
    corecore