214 research outputs found
Shortest, Fastest, and Foremost Broadcast in Dynamic Networks
Highly dynamic networks rarely offer end-to-end connectivity at a given time.
Yet, connectivity in these networks can be established over time and space,
based on temporal analogues of multi-hop paths (also called {\em journeys}).
Attempting to optimize the selection of the journeys in these networks
naturally leads to the study of three cases: shortest (minimum hop), fastest
(minimum duration), and foremost (earliest arrival) journeys. Efficient
centralized algorithms exists to compute all cases, when the full knowledge of
the network evolution is given.
In this paper, we study the {\em distributed} counterparts of these problems,
i.e. shortest, fastest, and foremost broadcast with termination detection
(TDB), with minimal knowledge on the topology.
We show that the feasibility of each of these problems requires distinct
features on the evolution, through identifying three classes of dynamic graphs
wherein the problems become gradually feasible: graphs in which the
re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent}
(B), or {\em periodic} (P), together with specific knowledge that are
respectively (the number of nodes), (a bound on the recurrence
time), and (the period). In these classes it is not required that all pairs
of nodes get in contact -- only that the overall {\em footprint} of the graph
is connected over time.
Our results, together with the strict inclusion between , , and ,
implies a feasibility order among the three variants of the problem, i.e.
TDB[foremost] requires weaker assumptions on the topology dynamics than
TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these
differences in feasibility imply that the computational powers of ,
, and also form a strict hierarchy
Line-Recovery by Programmable Particles
Shape formation has been recently studied in distributed systems of
programmable particles. In this paper we consider the shape recovery problem of
restoring the shape when of the particles have crashed. We focus on the
basic line shape, used as a tool for the construction of more complex
configurations.
We present a solution to the line recovery problem by the non-faulty
anonymous particles; the solution works regardless of the initial distribution
and number of faults, of the local orientations of the non-faulty
entities, and of the number of non-faulty entities activated in each round
(i.e., semi-synchronous adversarial scheduler)
Meeting in a Polygon by Anonymous Oblivious Robots
The Meeting problem for searchers in a polygon (possibly with
holes) consists in making the searchers move within , according to a
distributed algorithm, in such a way that at least two of them eventually come
to see each other, regardless of their initial positions. The polygon is
initially unknown to the searchers, and its edges obstruct both movement and
vision. Depending on the shape of , we minimize the number of searchers
for which the Meeting problem is solvable. Specifically, if has a
rotational symmetry of order (where corresponds to no
rotational symmetry), we prove that searchers are sufficient, and
the bound is tight. Furthermore, we give an improved algorithm that optimally
solves the Meeting problem with searchers in all polygons whose
barycenter is not in a hole (which includes the polygons with no holes). Our
algorithms can be implemented in a variety of standard models of mobile robots
operating in Look-Compute-Move cycles. For instance, if the searchers have
memory but are anonymous, asynchronous, and have no agreement on a coordinate
system or a notion of clockwise direction, then our algorithms work even if the
initial memory contents of the searchers are arbitrary and possibly misleading.
Moreover, oblivious searchers can execute our algorithms as well, encoding
information by carefully positioning themselves within the polygon. This code
is computable with basic arithmetic operations, and each searcher can
geometrically construct its own destination point at each cycle using only a
compass. We stress that such memoryless searchers may be located anywhere in
the polygon when the execution begins, and hence the information they initially
encode is arbitrary. Our algorithms use a self-stabilizing map construction
subroutine which is of independent interest.Comment: 37 pages, 9 figure
Symmetries and sense of direction in labeled graphs
AbstractWe consider edge-labeled graphs which model distributed systems, focus on properties of edge-labelings, and study their impact on graph classes. In particular, we investigate the relation between symmetries, topologies and sense of direction. We study symmetries based on the notion of view and of surrounding, and characterize the corresponding graph classes. Among other results, we show that the completely surrounding symmetric labeled graphs coincides with the class of Cayley graphs with Cayley labelings. We then focus on the relationship between symmetries and sense of direction in regular graphs. We characterize the class of regular labeled graphs with minimal symmetric sense of direction, as well as the class of those with group-based sense of direction
- …