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Abstract 

We consider edge-labeled graphs which model distributed systems, focus on properties of 
edge-labelings, and study their impact on graph classes. In particular, we investigate the rela- 
tion between symmetries, topologies and sense of direction. We study symmetries based on the 
notion of view and of surrounding, and characterize the corresponding graph classes. Among 
other results, we show that the completely surrounding symmetric labeled graphs coincides with 
the class of Cayley graphs with Cayley labelings. We then focus on the relationship between 
symmetries and sense of direction in regular graphs. We characterize the class of regular labeled 
graphs with minimal symmetric sense of direction, as well as the class of those with group-based 
sense of direction. 0 1998 Elsevier Science B.V. All rights reserved. 

1. Introduction 

A distributed system is a collection of autonomous entities which communicate by 
exchanging messages. The communication topology of the system is viewed as an edge- 
labeled undirected graph G = (V,E) where nodes correspond to the system entities, 
edges represent pairs of neighboring entities (i.e., entities which can communicate 
directly), and each node XE V has a local label (usually called port number) &((x, y)). 
associated to each of its incident edges (x, y). The entire system is denoted by the 
labeled graph (G, I) where I = {Lx: x E V}. The properties of the labeling ,I can be 
employed directly in the design of communication protocols for that system, so to 
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yield more efficient distributed computations. In particular, it is well known that if ,l 
satisfies the set of consistency constraints called sense of direction [8], the communi- 
cation complexity of several distributed problem can be drastically reduced (e.g., see 
[7, 9, 12, 14, 16, 17, 211). 

In spite of its practical relevance and its theoretical interest, little is known on 
properties of edge-labeled graphs; actually, the study of edge-labelings and their impact 
on graph classes is a largely unexplored topic in the current research literature. In this 
paper we investigate several questions related to symmetries and sense of direction in 
edge-labeled graphs. 

We consider symmetries based on two notions, view and surrounding, arising from 
the study of computability in anonymous distributed systems, that is where the en- 
tities do not have distinct names nor global identifiers. Views have been introduced 
in [24, 251 and extensively studied, sometimes with different names, e.g., [l, 2,10,13, 
18-20,221; surroundings have been introduced and investigated in [lo]. 

In the case of views, we consider the class of graphs which are (completely) view- 
symmetric, i.e. where all the nodes have the same view. A necessary and sufficient con- 
dition for the existence of a labeling A which would make a graph G view-symmetric 
had been established in [25]. We find a reformulation of view-symmetry solely in 
terms of symmetry of the labeling and provide, in Section 3, a necessary and sufficient 
condition for a label graph (G, 1) to be view-symmetric. This result gives a complete 
characterization of the class of view-symmetric labeled graphs, and it leads to a sim- 
ple and optimal algorithm for testing if in a labeled graph (G, 1) all the views are 
indistinguishable. 

In Section 4, we consider the stronger form of symmetry based on the notion of 
surrounding. A labeled graph is k surrounding-symmetric (or Sk-symmetric) when there 
is a partition of the nodes in k classes, such that all the nodes in each class have the 
same surroundings; it is completely surrounding-symmetric when all the nodes have 
the same surroundings (i.e., k = l), and it is surrounding asymmetric if it is not Sk- 
symmetric for any k <n where n is the number of nodes. We first establish that the class 
of completely surrounding symmetric is exactly the class of Cayley graphs with Cayley 
labelings. We then provide a characterization of the class of Sk-symmetric labeled 
graphs for k > 1; we also show that there are regular graphs which are surrounding 
asymmetric with any labeling. 

In Section 5, we consider sense of direction, study the link between symmetries and 
minimal sense of direction in regular graphs, and between sense of direction and a 
particular class of labelings based on commutative groups. 

Informally, a system (G, 2) has sense of direction if it is possible to understand, 
from the labels associated to the edges, whether different walks from any given node 
x end in the same node or in different ones. A sense of direction is minimal if the 
labeling uses only d(G) labels, where d(G) is the maximum node degree in G. It has 
been shown in [6] that minimal sense of direction exists only in graphs which are 
cycle symmetric, i.e., informally, all nodes belong to the same number of cycles of 
the same lengths. Little is known in the general case. 
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We find an interesting and unsuspected link between minimal sense of direction in 
regular graphs and completely surrounding symmetric graphs. In fact, we prove that 
a regular graph has a minimal symmetrical sense of direction if and only if it is 
completely surrounding symmetric, i.e. if and only if it is a Cayley graph. This result 
provides a new characterization of Cayley graphs; in lieu of the (low) polynomial 

algorithm of [4] for testing for (weak) sense of direction, it gives a low polynomial 
algorithm to test if a labeled graph is indeed a Cayley graph with a Cayley labeling. 
No better technique is currently known. An equivalent result, for directed graphs, has 
been independently discovered by [.5] using a different technique. 

Finally, we study the relationship between sense of direction and the group-based 
labelings (CC&labelings) introduced in [23]. We give a negative answer to the “com- 
pleteness” question, posed in [23], of whether the class of CG-labeled graphs coincides 
with the class of labeled graphs with sense of direction. (A positive answer would have 
implied a simpler definition of sense of direction). We actually show that the answer is 
negative even when the question is restricted to graphs with anti-symmetric labelings. 
Further, we show that the class of graphs with uniform CG-labelings [23] is a proper 
subset of the class of labeled graphs with minimal sense of direction; thus, the answer 
to the completeness question is negative even when restricted to graphs with minimal 
labelings. 

The paper is organized as follows. In the next section we discuss the framework 
and some basic properties. In Section 3, we introduce the notion of view and we 
characterize the class of completely symmetric graphs. In Section 4, we introduce the 
notion of surrounding and characterize the classes of surrounding symmetric graphs. 
In Section 5, we investigate the relationship between sense of direction, completely 
surrounding symmetric graphs, and group-based labelings. 

2. Framework 

Let G = (V, E) be a simple undirected graph; let E(x) denote the set of edges incident 
to node x E V, and d(x) = ]E(x)l the degree of x. 

Given G = (V, E) and a set C of labels, a local labeling function (or local orientation) 
of x E V is any injective function AX : E(x) -+ C which associates a distinct label 1 E C 
to each edge e E E(x). A set 3,= { 3,: XE V} of local labeling functions will be called a 
labeling of G, and by (G, A) we shall denote the corresponding (edge-)labeled graph. 

A labeling 3. is minimal if it uses d(G) = max{d(x): XE V} labels. It is symmetric if 
there exists a bijection $ : C + C such that for each (x, y) E E, A!,( (y,x)) = $(&( (x, y) )); 
II/ will be called the edge-symmetry function. 

Given two labeled graphs (G = ( V, E), 2) and (G’ = ( V’, E’), j-‘), a bijective function 
x : V + V’ is a labeled graph isomorphism (or lg-isomorphism) between G and G’ ifi 

1) (u, u) E E ++ (x(u), x(u)) EE’; and 2) 4(u, 0) > = ~J(x(u), x(u)) 1. 
A walk 71 in G is a sequence of edges in which the endpoint of one edge is the 

starting point of the next edge. Let P[x] denote the set of all the walks starting from 
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XE I’, P[x, y] the set of walks starting from XE V and ending in YE V. Let /i, : P[x] -+ 
C+ and /i = {AX : x E V} denote the extension of II, and 1, respectively, from edges to 
walks; let &]={&(Yz):zEP[x]}, and ~[x,~]={/1,(~):rc~P[x,~]}. 

Given a walk rc=(ei,ez,..., ek) EP[x, y] we will denote by E the reverse walk 

(ek~ek-l~~~~~ el) ~P[y,x]; if /1,(z)= a, we shall denote by r,(a) the reverse string 

A,@)‘). 
Given an edge symmetry function $, we shall denote by Y : C+ -+ C+ its extension 

to strings; i.e., for CI = ai + a2 1. . . . up EC+, Y(x) = $(q,). . . . . $(a, ), where . denotes 
the concatenation operator. 

Let + be the partial function V x Z* ---f V such that (in infix notation) u = u - E, 
where E is the empty string, and, for M # E, u = u + CI ti 3~ EP[u, u] A n,(n) = ~1. Let 
u + tl be defined; then, we shall denote by [cljU the set of strings /l[u, u-+ a]. 

3. Views and V-symmetries 

A crucial concept when computing on anonymous networks is the one of view, 
introduced in [25]. The view Tc~,n)(v) of a node v in a labeled graph (G, 1) is an 
infinite, labeled, rooted tree “downward locally isomorphic” to G; i.e., such that there 
exists a mapping from the vertices of the tree to the vertices of G which maps the 
root of the tree to v, the children of the root to the neighbors of v and, recursively, 
the children of a node to the neighbors of that node. When no ambiguity arises, we 
shall denote a view Tco,n,(v) simply by T(v). For any integer i 20, let T’(v) denote 
the i-view of node v, i.e., T(u) truncated to distance i, where distance is defined in 
terms of edges. A labeled graph and its 2-view from node u are shown in Fig. 1. 

It has been shown that in anonymous distributed systems (i.e., without node identi- 
ties) the view of an entity represents the maximum information the entity can obtain by 
message transmission [25]. Furthermore, what is computable in such systems, depends 
on the multiplicity of the views [22, 251. Intuitively, the least powerful systems 
those where all nodes have the same view. 

Definition 1 (V-symmetry). A labeled graph (G, 1) is completely view symmetric 
V-symmetric) when all nodes have the same view. 
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V Y 

2 3 1 lsl 1 3 2 

U X 
2 1 

are 

(or 

Fig. 1. A labeled graph and its 2-view @(u) from node II. 
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Fig. 2. V-symmetric graphs: (a) an hypercube (b) a minimum identity graph. 

The first important question is to determine which labeled graphs are completely 
view symmetric. Obviously, V-symmetry can only exist in regular graphs. 

The following existential result is due to [25]: 

Theorem 1. There exists a 
factorable. 

V-symmetric labeling of G ifs G is regular and { 1,2}- 

where a p - ,factor of G is a spanning p-regular subgraph of G, and G is { 1,2}- 
factorable if there is a set of l- or 2-factors F,, . . . , Fk (F; = (V,E;)) such that El,. . . , Ek 
constitute a partition of E. 

It is possible, however, to derive a complete characterization of V-symmetry solely 
in terms of symmetry of the labeling, as stated in the next theorem: 

Theorem 2. A labeled graph (G, 3.) is V-symmetric if and only if G is regular and 3, 
is both minimal and symmetric. 

Proof. It follows immediately, by induction, from the recursive definition of view, 
d-regularity of G, and minimality and symmetry of 1. 0 

This characterization leads to a time-optimal algorithm for V-symmetry testing. In 
fact, from Theorem 2 it follows that, given a labeled regular graph (G, A), to test if 
all nodes have the same view it is sufficient to test if the labeling is minimal and 
symmetric, which can easily be accomplished in time linear in the number of edges. 

Two examples of V-symmetric graphs are shown in Fig. 2. In graph (a) the la- 
beling is symmetric (the edge symmetry function is the identity function), and uses 
three labels; also in graph (b) the labeling is symmetric (with edge symmetry func- 
tion $( 1) = 2, e(2) = 1 and $(3) = 3) and uses three labels. By Theorem 2, these two 
labeled graphs are V-symmetric. 

From Theorems 1 and 2 it immediately follows a necessary and sufficient condition 
for the existence of a labeling which is simultaneously minimal and symmetric: 

Theorem 3. A regular graph G has a minimal symmetric labeling ifs it is { 1,2}- 
fkctorable. 
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4. Surroundings and S-symmetries 

4.1. Surroundings 

In the previous section we considered the notion of view of a node in a labeled 
graph; a stronger notion is the one of surrounding, introduced in [lo]. 

The surrounding N,GJ,(u) of a node u in (G, A) is the labeled graph lg-isomorphic 
to G, where the lg-isomorphism xU maps each node v E V to the set of strings /i[u, V] 
and u to the set of strings /i[u, U] U {E}, where E is the empty string. When no am- 
biguity arises, we shall denote a surrounding N(GJ)(u) by N(u). As an example, the 
surrounding of node u in the labeled graph of Fig. 1 is shown in Fig. 3; notice the 
difference between surrounding and view. 

It has been shown that, in anonymous distributed systems with sense of direction (a 
concept which will be discussed in Section 5), the surrounding of a node represents 
the maximum information that an entity can obtain by message transmissions [lo]. 
Furthermore, what is computable in such systems, depends on the number of distinct 
surroundings as well as on their multiplicity (i.e., how many nodes have a given 
surrounding) [lo]. 

Definition 2 (Sk-symmetry). A labeled graph (G,1) is Sk-symmetric when there are 
k classes of nodes such that two nodes have the same surrounding iff they are in the 
same class. 

Before proceeding to analyze the &-symmetries, we introduce a useful property 
which follows directly from the definition of surrounding: 

Lemma 1. There is an edge in N(u) from node X to node Y labeled 1, $f 3a~X, 
/KEY, such that j?=cc.l. 

4.2. Si -symmetries 

In this section we fully characterize the class of Si-symmetric labeled graphs, i.e., 
when all nodes have the same surrounding. We show that it coincides with the class 
of Cayley graphs with Cayley labeling. 

Given a set of generators 52 for a finite group r, a Cayley graph is a graph 
Gr = (V,E), where the vertices correspond to the elements of the group (V = r) and the 
edges correspond to the action of the generators; that is (x, y) E E iff 3g E a :x o g = y, 
where o is the operation of the group. The set of generators is closed under inverses; 
so we can consider the graph undirected. 

Let C = 0; the natural labeling 2 for a Cayley graph Gr is the following: ‘v’(x, y) E 
E(n), &( (x, y)) = g, where g is the generator such that y =x o g. In the following, we 
shall call this labeling Cayley labeling. 
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Fig. 3. A labeled graph and its surrounding from node u 

Theorem 4. A labeled graph (G, 1) is Sl-symmetric ifs G is a Cayley graph and I is 
a Cayley labeling. 

Proof. (+) S1 -symmetry implies V-symmetry; hence, by Theorem 2, the graph is 
d-regular, the labeling is symmetric and uses d labels. Therefore, for any node v and 
any non-empty string /? E Cf, p E A[v]. Furthermore, St -symmetry implies I[c$ = I[Ix]~ for 
each u and v and any CI E Z*; thus, in the following, we shall use the notation [a] without 
subscripts. Let r = {[E]: o! E C*} and let 0 : r x r -+ r be such that [cr] 0 [/?I = i[a . B]. 
We now show that (r, 0) is a group. First, we prove that 0 is associative: in fact, we 

have that ([cI] 0 I[&) 0 [r] = [cr . P] 0 [y] = [(cc . P> . y] = [cl . (P . y)] = [a] 0 [p . y] = pj 0 
(Up] a [y]). We now show that I[&] is the identity of r: in fact, for each [cr] E r, [cr] 0 
[s] = [a . E] = [u.] = [E . a] = I[&] o p]. Let [a]-’ = [Y(a)], then [cr] o gag-’ = [or . Y(ct)] = j[&] 
since u + CI. Y(a) = 2.4 = u + E. 

Let Q={[a]:aEC}. Q . IS a set of generators for r. In fact, for any I[fi]e r, by 
definition there exists CI E C* s.t. [a] = [aI] 0 [a21 @ . 0 [alEI] = [j3] where [ai]E 62. 
Moreover, if 1 E Z, then Y( 1) EC; that is, [Z] E Q, then [I]-’ = [$( I)] E s2. Finally, BE] $?‘a 
because there are no self-loops. Thus, N(u) is the Cayley graph of the group (r,@) 
with generator Sz. Since N(u) is lg-isomorphic to (G, A), the theorem follows. 

(+) By definition of Cayley graphs it directly follows that, if (G, 1) a Cayley graph 
with a Cayley labeling, then (G, 1) is completely surrounding symmetric. 0 

We now examine the relationship between St-symmetry and a class of labelings 
discussed in [15]. Given a d-regular graph G, a coloring and orientation is a symmetric 
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labeling with local orientation that uses d labels. A coloring and orientation is regular 
if, for any two walks rrt EP[x] and 712~P[y] with &(rrt)=/iJ~2), rcr EP[x,x] iff 

712 WY, Yl. 
The following theorem is proved in [ 151. 

Theorem 5. A d-regular graph G has a regular coloring and orientation 1 ifs G is a 
Cayley graph on d generators and I is the Cayley labeling. 

Thus, the notions of Sr-symmetry and of regular coloring and orientation coincide. 
This leads to the following alternative characterization of Sr-symmetric graphs: 

Theorem 6. A labeled graph (G, ,I) is S1 -symmetric ifs Vx, y E V, tl E C* : x =x - CI ifs 
y=y+ci. 

Proof. By Theorems 4 and 5 and by definition of regular coloring and orientation. 0 

4.3. Sk-symmetries 

In this section, we give a necessary and sufficient condition for two nodes to have 
the same surrounding. Using this result, we then characterize the class of Sk-symmetric 
graphs; that is the graphs in which there are k different surroundings. 

The following theorem gives a necessary and sufficient condition for two nodes to 
have the same surrounding. 

Theorem 7. For all u, VE V the following two conditions are equivalent: 
1. v’a,pLZ*: 

(a) x = u + CI is defined if and only if y = v - a is defined, and 
(b) x=x ‘pHy=y’p. 

2. N(u) =N(v). 

Proof. (1 + 2): We will first show that for each node X in N(u) there exists a node 
Y in N(v) such that X = Y, and vice versa. Given a node X in the surrounding N(u), 
let VEX; this implies that u’ = u - o is defined. By hypothesis (la), also v’ = u - w 
is defined; that is, there exists a node Y in the surrounding N(v) such that ok Y. 
By definition of string reverse, v = v + w . ?-J!(w); by hypothesis 1 with CI = E and 
/J = o . r,(w), it follows that u = u + w . r,(w) and, since u’ = u - o, u = u’ -r”(w). 
Consider now an arbitrary y EX; we will show that YE Y. Since VEX, u’ = u + y and, 
since as shown above u = u’ -r,(o), it follows that u’ = u’ + r”(w) . y. By hypothesis 
1 with a = w and fi = r,(w) y, it follows that v’ = v’ + r,(w) . y; that implies v’ = u + 
w . r,(w) . 7. The last expression becomes v - y = v’ since, by definition of reverse, 
v=v* w ’ rv(w); thus, y E Y. Since y is arbitrary, it follows X C Y. Analogously, it can 
be shown that Y CX; thus, X = Y. That is, for every node in N(u) there is one in N(u) 
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with the same set of strings. The vice versa can be shown with a similar reasoning. 
Hence, N(u) and N(v) have the same set of nodes. We now show that N(u) and N(u) 
have also the same set of labeled edges. Let Xl, X2 be nodes in N(u), and Y1, Yl nodes 
in N(n) such that X1 = Vi and X2 = Y,. By Lemma 1, there is a (labeled) edge in N(u) 
between Xi and X2 iff there is an edge with the same label between Yt and Yz. Thus, 

N(u) = N( 0). 
(2 + 1): By contradiction, (Case a’) &EC* such that u - u is defined but u - x 

is not, or (Case b’) 3a,p~C* such that u+a.fl=u-cc but v-a.P#2:+3. 
Case a’: By definition of surrounding u - CI being defined implies that there is a 

node X in N(u) such that MEX. Since N(u) =N(o), there is a node Y in N(v) such 
that X = Y. Thus, tx E Y; that is, v + CI is defined; a contradiction. 

Case b’: Let X and Y be the two nodes in N(u) and N(v), respectively, such that 
X=Y, and let EEX. Since U-x./?=u- ‘x, then, a p EX and, hence, CI /?E Y; this 
implies U- cx ’ 1) = v+ CY which is a contradiction. 0 

We can now characterize the class of Sk-symmetric graphs. 

Theorem 8. A labeled graph (G, I.) is Sk symmetric ifs there exists a partition P= 
(PI 3. . ., Pk ) of’ the nodes such that Vi, Yx, y E fl, ‘d’6 E C* : 

(a) x - SET [fly + 6~4; and 
(b)x=x-6ifSy=y+6. 

Proof. (+): Let N1 , . . . , Nk be an arbitrary order of the k different surroundings, and 
let P = (PI,. . . , Pk) be a partition of I’ such that P = {u: N(u) = Ni}. By contradiction, 
suppose that (a) or (b) does not hold; that is, 3, jE { 1,. . . , k}, x, y EE, 6 EC* such 
that: (a’)x+dEP, but y-6@4, or (b/)x=x-6 but y#y+ 6. 

Case a’: By construction, N(x + 6) # N(y - 6); this implies the existence of ,8 such 
that [&.-a #[fib-6. Thus, [IS . p]lx # i[S . &, that implies N(x) # N(y): a contradiction. 

Case b’: In this case, 8~ I[clx but 6 $[IE~~; this implies [[E]~ # [cb+ and, thus, N(x) # 
N(y): a contradiction. 

(+): Let P = (PI,. . . ,Pk) be a partition of the node for which conditions (a) and 
(b) hold. We will show that for each u, VES, N(u) =N(v). In order to show this, 
we prove that: k,p~C: (1) U’ = u + c( is defined iff 2” = v * 3 is defined, and (2) 
u’ = u’ - p iff 0’ = vt - fi. 

Byhypothesis(a)with6=a,x=vand y=v,wehavethatu~a~Pjiffu+c~a~P,, 
which implies II - x is defined iff v - r is defined (this proves 1 ), and that u’, u’ E PI for 
some 1. Thus by hypothesis (b) with 6 = p, x = U’ and y = v’, we have that U’ = U’ - fi 
iff u’ = n’ + p, that proves (2). It now follows from Theorem 7 that N(v) = N(u). 0 

In Fig. 2(b) there is an example of a V-symmetric graph (G,i) which is not 
&-symmetric for any k <n where n is the number of nodes. Notice that G (known 
as “minimum identity graph” [3]) cannot be &-symmetric for k <n regardless of the 
choice of the labeling because there are no isomorphisms between vertices in G. We 
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shall call any such graph surrounding-asymmetric. An interesting open question is the 
characterization of these graphs and their properties. 

5. Symmetries and sense of direction 

In this section, we introduce the definition of sense of direction, show the existing 
link between symmetries and minimal sense of direction in regular graphs, and discuss 
the relationship with the CG-labelings of a graph, a particular class of labelings based 
on commutative groups. 

5.1. Sense of direction 

Given a labeled graph (G, A), the system is said to have Sense of Direction when it is 
possible to understand, from the labels associated to the edges, whether different walks 
from any given node x end in the same node or in different ones (see, e.g. [4, 8, 111). 
More precisely, sense of direction involves the existence of a consistent coding and a 
consistent decoding function. 

Given (G, A), a consistent coding function (or, simply, coding function) c for J. is any 
function with domain Z+, such that walks originating from the same node are mapped 
to the same value (called local name) if and only if they end in the same node; that is, 
Vx,y,z~ I’, Vrri ??P[x,y], rc2~P[x,z], c(&(rri))=c(&(rc2)) H y=z. A coding func- 
tion is homonymous when Vx, y E V, ni E P[x,x], 712 E P[y, y]: c(&(rci )) = c(n,(n2)); 
that is, an homonymous coding function associates the same value to all the cycles in 
the graph. 

Definition 3 (WY9 - Weak sense of direction). A labeled graph (G, A) has Weak 
Sense of Direction c iff c is a coding function for 2. Alternatively, we shall say that 
c is a WY9 in (G, 1). 

Let c be a WY9 in (G, A); if c is homonymous, we say that (G, 1) has an homony- 
mous WY9. 

Given a coding function c, a consistent decoding function (or, simply, decoding func- 
tion) d for c is any function such that V(x, y) E E(x), TC E P[y,z] d(&( (x, y)), c(AJrc))) 
= c(1Lx((x, Y))~~y(n)). 

Definition 4 (9’9 - Sense of direction). A labeled graph (G, 1) has Sense of Direc- 
tion (c,d) iff c is a WY9 and d is a decoding function for c. Alternatively, we shall 
say that (c, d) is a 9’9 in (G, 1). 

Notice that 99 is a stronger notion than WY9; in fact, there exist labeled graphs 
with WY9 but without 9.9 (see, e.g., [4]). 
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5.2. Minimal sense of direction 

In this section we consider labeled graphs (G,13) where 3, is minimal; i.e., it uses 
d(G) labels. In particular, we focus on regular graphs. A labeled graph with mini- 
mal labeling and (weak) sense of direction is said to have minimal (weak) sense of 
direction. 

An interesting problem is the characterization of the class of regular graphs with 

minimal sense of direction. In [6] it has been shown that a regular graph can have 
a minimal sense of direction only if is cycle symmetric, i.e., informally, all nodes 
belong to the same number of cycles of the same lengths. A complete characterization 
of regular graphs which have minimal (weak) sense of direction has not been found 
yet. In this section we move one step in this direction and completely characterize the 
class of regular graphs with minimal 99 when the labeling is symmetric. 

Consider first the following lemma, established in [lo]. 

Lemma 2. Let (G, A) have weak sense of direction. (G, A) is S1 -symmetric ifs it is 
V-symmetric. 

We can now prove the following equivalences. 

Theorem 9. Let (G,A) be a regular graph with minimal symmetric labeling. The 
following statements are equivalent: 
(1) (G,A) has WY9 
(2) (G, A) has 99 
(3) (G, A) is a Cayley graph with Cayley labeling. 

Proof. (l)+ (3): Let c be a consistent coding function for (G,l). Since 1 uses d 
labels, by Theorem 2, (G, A) is V-symmetric. By Lemma 2, (G, 2) is Si-symmetric. By 
Theorem 4, (G, A) is a Cayley graph with Cayley labeling. 

(3) + (2): In [6], it has been proved that every Cayley graph has a minimal sense 
of direction with symmetric labeling. 

(2) + (1): It trivially follows by definition of sense of direction. 0 

In spite of the simplicity of its proof, this result has some strong consequences. 
First of all, it uncovers an interesting and unsuspected link between minimal sense of 
direction and Cayley graphs, via symmetries of the surrounding. This provides a new 
characterization of Cayley graphs (with Cayley labelings) in terms of consistency of 
the sequence of labels. As a consequence, to test if a regular graph G with minimal 
symmetric labeling is a Cayley graph with a Cayley labeling is equivalent to test for 
the existence of a consistent coding function. Note that there is no need to test for the 
existence of a consistent decoding function because of the equivalence of the first two 
statements in the theorem. 
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Fig. 4. A non-Cayley labeling of Cd with minimum number of labels. 

In lieu of the (low) polynomial algorithm of [4] for testing for (weak) sense of 
direction, this results implies the existence of a low polynomial algorithm for test if a 
labeled graph is Cayley. No better technique is currently known. 

Let us show that the requirement in Theorem 9 that 1 be symmetric is necessary; 
that is, without symmetry of the labeling, not all regular labeled graphs with minimal 
sense of direction are Cayley graph with Cayley labeling. Consider, for example, the 
labeled graph (G, S) shown in Fig. 4. It is easy to verify that (G, 6) has a sense of 
direction. At the same time, G is a Cayley graph but 6 is not a Cayley labeling: for 
node x, a.a = I but, for node y, a.a #I, where I is the identity of the group. 

Furthermore, in regular graphs with minimal sense of direction, symmetry of the 
labels and homonymy of the coding function coincide. In fact, we have that: 

Theorem 10. Let (G,,?) be a regular labeled graph with minimal sense of direction 
c. 2 is symmetric ifs c is homonymous. 

Proof. Let (G,A) be a d-regular labeled graph with minimal sense of direction. 

(+): Let $ be the symmetry function. Let rci E P[x,x] and 7~2 E P[y, y], with x # y. 
The graph is d-regular and uses d labels (1 ,,. . . , Id), thus, by definition of consis- 
tent coding function, we have that: for every li, 16 i <d, c(_~,(Tc~)) = C(li . Il/(li)) = 

c(A,(7c2)) 
(-+): Let Ii,..., ld be the d labels used. By contradiction, suppose 3, is not symmet- 

ric. In this case, we would have two edges (x, y) and (z, W) such that &( (x, y)) = a, 
i,((y,x))=b, &((z,w))=a, &((w,z))=c, with cfb. 

By definition of homonymy, we have that c(n,((x, y)~(y,x)))=c(/l,((z,w)~(w,z))), 
that is: c(a, b) = c(a, c). 

Since the graph is d-regular, uses d labels, and c # b there must exist an edge (y, y’), 
with y’ #x such that A,( (y, y’)) = c. But, by definition of consistent coding function, 
we have that: c(&((x, y).(y,x)))#c(&((x, y).(y, y’))), that is: c(a,b)#c(a,c), yield- 
ing the contradiction. Cl 

Thus, in Theorem 9, the assumption of symmetry of the labeling can be replaced by 
the assumption of homonymy of the coding function. The result of Theorem 9, with 
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the assumption of homonymy, has been independently discovered by [5] and shown to 

hold also for directed graphs. 

5.3. Group sense of direction 

A particular labeling, here called Commutative Group labeling, or CG-labeling, has 
been defined in [23]; in this section, we describe the relations between sense of direc- 
tion, CG-labelings, and Cayley graphs. 

5.3.1. CG-labeling 
Let r be a commutative group with binary operation + and identity 0. A labeled 

graph (G = (V, E), 1) has a CG-labeling (based on r) iff (1) there exists a bijection 

JV” : V + r, and (2) &((u, v)) + N(U) = M(v) [23]. 
Thus, given any graph G, it is always possible to construct a CG-labeling by choosing 

appropriate commutative groups. Observe that a CG-labeling satisfies the anti-symmetry 
property &((u,v))= -&((v,u)), and th us, it is a special case of symmetric labeling. 
For each aa.at. . . a, = ct E I’“, let $ : r* -+T be such that $(~)=as+at +...+a,. 

Any graph with CG-labeling has homonymous sense of direction, as shown in the 
next theorem. 

Theorem 11. A system (G, ,I), where % is a CG-lubeling has homonymous sense of 
direction (@, @). 

Proof. Let 1, be a CG-labeling based on r in (G,I). By Theorem 6 in [23], j_ has 
the closed walk property, that is for each rc E P[u, v], @(&(rr)) = 0 @U = v. By contra- 
diction suppose that $ has the closed walk property and it is not a consistent coding 
function for A. This means that there exist three nodes X, y, z and two walk nl E P[x, y], 

7~2 E P[x,z] s.t. @(/I,) = @? (A,(n~))~y=z. Let rc be the reverse walk 7t~ of r-r1 
concatenated with 712, then e(z) = $ (nY(7Y7.7r2)) = $ (.4,(71,)) + @(n,(zt )). By ex- 
tending the anti-symmetry property from edges to walks, @(,4,(q)) = - @ (&(nt )). 
By the closed walk property on z, @(n,(z)) = 0 % y = z, that implies @(&(zt )) = $ 
(n,(rc2)) @ y = z which is a contradiction. Analogously, it is easy to see that @ is 
also a consistent decoding function; thus, (@,@) is a sense of direction in (G, 2). 
Homonymy follows from the commutativity of the coding function. 0 

In the following, we shall refer to such a sense of direction as a CG-sense oj 
direction. 

5.3.2. CG-99 and 99 
In [23], Tel posed the question of whether any sense of direction is a CG sense of 

direction; that is, if the definition of CG-labelings completely defines sense of direction. 
Observe that a positive answer to this question, which we shall call the “completeness” 
question, would have implied a simpler equivalent definition of sense of direction. In 
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Fig. 5. A sense of direction that is not (X-sense of direction. 

the following, we will settle this question with a negative answer, even for restricted 
classes of labelings. 

To verify that there are senses of direction which are not CG-senses of direction, 
it suffices to show a labeled graph with sense of direction where the labeling is not 
anti-symmetric, or where all the coding functions are not homonymous (e.g., the graph 
of Fig. 4). However, even when considering only anti-symmetric labelings, there are 
homonymous sense of direction which are not CG-senses of direction, as shown by 
the following theorem. 

Theorem 12. The class of labeled graphs with CG-sense of direction is a proper 
subset of the class of anti-symmetrically labeled graphs with homonymous sense of 
direction. 

Proof. By Theorem 11, any labeled graph with CG-sense of direction has sense of 
direction. Consider now the labeled graph (G,il) of Fig. 5. Suppose, by contradiction, 
that there is a CG-sense of direction. We must have that (1) b + c = d (since b. c . - d 
is a cycle); (2) a + d = -z (since a . d . z is a cycle); while, (3) a + b + c + z # 0 (since 
aa b. c .z is not a cycle). Substituting (1) in (3), we have that: a + b + zf 0, which 
contradicts (2). However, in this graph there exists an homonymous sense of direction 
that satisfies the anti-symmetric property. Consider the coding function c : Zf 4 C+ 
such that V’cc=ao.al.... .akEC+, c(ao.al. ... .ak)=aoeale +.. @ak, where 8 is 
a noncommutative operator such that Vx E C: x 8 E = x, E 8 x =x, x 8 -x = E, -x 8 x = E; 
moreover, a 8 d = -z; b 8 c = d. It is easy to verify that c is a consistent coding func- 
tion in (G, A); furthermore, c is homonymous since, by definition x 8 -x = E. 

Furthermore, it is easy to see that d : C x Z+ --) Cf, defined as follows, Va E C, 
a E C+, d(a,c(a)) = a 8 c(a) is a consistent decoding function for c. Thus, (c,d) is a 
sense of direction in (G,i). 0 

In other words, the answer to the “completeness” question is negative even when 
restricted to anti-symmetric labelings and homonymous codings. 

5.3.3. Minimal 9’9 and uniform CG-99 
We now consider the relationship between minimal sense of direction in regular 

graphs and a particular case of CG-labelings called uniform. 
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Fig. 6. A non-commutative Cayley graph. 

A CG-sense of direction (based on r) is uniform if every node has the same collec- 
tion of local labels Sz [23]. Note that, by definition, uniform sense of direction can exist 
only in regular graphs; in other words, “uniform” and “minimal” are synonyms. Further 
observe that any graph (G, 1) with a CG-sense of direction is a subgraph of a commu- 
tative Cayley graph with a Cayley labeling. Hence, if (G, 1) has uniform CG-sense of 
direction then G is regular and J. is a minimal and symmetric sense of direction; thus, 
(G, 2) is a Cayley graph with a Cayley labeling. In particular, a uniform CG-sense of 
direction based on r is a Cayley labeling of the commutative Cayley graph r with set 
of generators 52. 

Summarizing, the class of labeled graphs with uniform CG-sense of direction coin- 
cides with the class of commutative Cayley graphs with Cayley labeling. This implies 
that any Cayley graph of a non-commutative group has minimal sense of direction 
(e.g., the graph of Fig. 6) but, by definition, does not have uniform CG-sense of 
direction. That is, the class of regular graphs with uniform CG-sense of direction is a 
proper subset of the class of regular graphs with minimal sense of direction. 

We can actually prove the stronger statement that there exist graphs with minimal 
99 which cannot be relabeled to be the Cayley graph of a commutative group, and 
thus to have uniform CG-sense of direction as will be shown in the next theorem. 

Theorem 13. The class of regular graphs G for which there exist a labeling A such 
that (G, 2) has uniform CG-sense of direction is a proper subset of the class of regular 
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graphs G for which there exist a labeling 2 such that (G, A) has minimal sense of 
direction. 

Proof. From Theorem 9, it follows that every labeled graph with uniform CG-sense of 
direction has also a minimal sense of direction. We now show that the converse is not 
true. Consider the graph G shown in Fig. 6. Consider also the labeling 6 for G shown 
in Fig. 6. (G, 6) is a Cayley graph based on the group ZS x Z2 with non-commutative 
operation + such that (i,x) + (j, y) = (i +j.3” mod 8,x + y mod 2) and set of generators 
{( 1, 0), (7,0), (0, 1 )}. By Theorem 9, (G, 6) has a minimal sense of direction. 

Suppose, by contradiction, that there exists a labeling 1 such that (G, I) is the 
Cayley graph of a group with commutative operator t and generators (i.e., labels) a, 
b, c. Without loss of generality, let a * b = 0 and c * c = 0. Then, by commutativity, 
a * c * b t c = 0; on the other hand, this implies that there must exist a cycle of length 4 
in G. A contradiction. Thus, any CG-labeling for G must use more than 3 labels. 0 
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