3 research outputs found

    Time point-dependent concordance of flow cytometry and RQ-PCR inminimal residual disease detection in childhood acute lymphoblasticleukemia.

    No full text
    Background. Flow cytometric analysis of leukemia-associated immunophenotypes and polymerase chain reaction-based amplification of antigen-receptor genes rearrangements are reliable methods to monitor minimal residual disease. Aim of this study was to compare the performances of these two methodologies in the detection of minimal residual disease in childhood acute lymphoblastic leukemia.Design and methods. Polymerase chain reaction and flow cytometry were simultaneously applied for prospective minimal residual disease measurements at days 15, 33 and 78 of induction therapy on 3565 samples from 1547 children with acute lymphoblastic leukemia enrolled into the AIEOP-BFM ALL 2000 trial. Results. The overall concordance was 80%, but different results were observed according to the time point. Most discordances were found at day 33 (concordance rate 70%) in samples that had significantly lower minimal residual disease. However, the discordance was not due to different starting materials (total versus mononucleated cells), but rather to cell input number. At day 33, cases with minimal residual disease below or above the 0.01% cut-off by both methods showed a very good (5-year-event free survival, 91.6%) or a poor (5-year-event free survival, 50.9%) outcome, respectively, whereas discordant cases showed similar event free survival (around 80%). Conclusions. Within the current BFM-based protocols, flow cytometry and polymerase chain reaction cannot simply substitute each other at single time points, and the concordance rates between them largely depend on the time point. Our findings suggest a potential complementary role of the two technologies in optimizing risk stratification in future clinical trials

    Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group.

    No full text
    Children with Down syndrome (DS) have an increased risk of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). The prognostic factors and outcome of DS-ALL patients treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled in 16 international trials from 1995 to 2004. Non-DS BCP-ALL patients from the Dutch Child Oncology Group and Berlin-Frankfurt-Münster were reference cohorts. DS-ALL patients had a higher 8-year cumulative incidence of relapse (26% ± 2% vs 15% ± 1%, P < .001) and 2-year treatment-related mortality (TRM) (7% ± 1% vs 2.0% ± <1%, P < .0001) than non-DS patients, resulting in lower 8-year event-free survival (EFS) (64% ± 2% vs 81% ± 2%, P < .0001) and overall survival (74% ± 2% vs 89% ± 1%, P < .0001). Independent favorable prognostic factors include age <6 years (hazard ratio [HR] = 0.58, P = .002), white blood cell (WBC) count <10 × 10(9)/L (HR = 0.60, P = .005), and ETV6-RUNX1 (HR = 0.14, P = .006) for EFS and age (HR = 0.48, P < .001), ETV6-RUNX1 (HR = 0.1, P = .016) and high hyperdiploidy (HeH) (HR = 0.29, P = .04) for relapse-free survival. TRM was the major cause of death in ETV6-RUNX1 and HeH DS-ALLs. Thus, while relapse is the main contributor to poorer survival in DS-ALL, infection-associated TRM was increased in all protocol elements, unrelated to treatment phase or regimen. Future strategies to improve outcome in DS-ALL should include improved supportive care throughout therapy and reduction of therapy in newly identified good-prognosis subgroups
    corecore