3 research outputs found

    Liver-Specific Polygenic Risk Score Is Associated with Alzheimer's Disease Diagnosis

    Get PDF
    BACKGROUND: Our understanding of the pathophysiology underlying Alzheimer's disease (AD) has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. The use of functional annotation has been able to improve the power of genomic models. OBJECTIVE: We sought to leverage genomic functional annotations to build tissue-specific AD PRS models and study their relationship with AD and its biomarkers. METHODS: We built 13 tissue-specific AD PRS and studied the scores' relationships with AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two longitudinal cohort studies of AD. RESULTS: The AD PRS model that was most predictive of AD diagnosis (even without APOE) was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67-2.78), p = 3.62×10-9. The liver AD PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of amyloid-β (Aβ 42:Aβ 40 ratio, p = 3.53×10-6) and the phosphorylated tau:amyloid-β ratio (p = 1.45×10-5). CONCLUSION: These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research

    Cerebrospinal Fluid Sphingomyelins in Alzheimer's Disease, Neurodegeneration, and Neuroinflammation

    Get PDF
    BACKGROUND: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. OBJECTIVE: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. METHODS: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. RESULTS: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. CONCLUSION: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific

    Assessing the Biological Mechanisms Linking Smoking Behavior and Cognitive Function: A Mediation Analysis of Untargeted Metabolomics

    No full text
    (1) Smoking is the most significant preventable health hazard in the modern world. It increases the risk of vascular problems, which are also risk factors for dementia. In addition, toxins in cigarettes increase oxidative stress and inflammation, which have both been linked to the development of Alzheimer’s disease and related dementias (ADRD). This study identified potential mechanisms of the smoking–cognitive function relationship using metabolomics data from the longitudinal Wisconsin Registry for Alzheimer’s Prevention (WRAP). (2) 1266 WRAP participants were included to assess the association between smoking status and four cognitive composite scores. Next, untargeted metabolomic data were used to assess the relationships between smoking and metabolites. Metabolites significantly associated with smoking were then tested for association with cognitive composite scores. Total effect models and mediation models were used to explore the role of metabolites in smoking-cognitive function pathways. (3) Plasma N-acetylneuraminate was associated with smoking status Preclinical Alzheimer Cognitive Composite 3 (PACC3) and Immediate Learning (IMM). N-acetylneuraminate mediated 12% of the smoking-PACC3 relationship and 13% of the smoking-IMM relationship. (4) These findings provide links between previous studies that can enhance our understanding of potential biological pathways between smoking and cognitive function
    corecore