5 research outputs found

    DataSheet_1_Cost-Effectiveness of Pembrolizumab for the treatment of Non–Small-Cell lung cancer: A systematic review.doc

    No full text
    IntroductionPembrolizumab, an immune checkpoint inhibitor for treating non-small cell lung cancer (NSCLC), can impose a high financial burden. Several studies have explored the cost-effectiveness of this expensive agent. We conducted a systematic review and pooled analysis to evaluate the quality of the existing pharmacoeconomic studies on pembrolizumab strategies for NSCLC treatment as well as to conclude the cost-effectiveness of such strategies.MethodsEnglish and Chinese databases were searched to collect health economic studies on pembrolizumab therapies (monotherapy or a combination with chemotherapy) compared with chemotherapy for the treatment of NSCLC patients. The reporting quality, modeling methods, and results of incremental cost-effectiveness analysis of the included literature were descriptively analyzed.ResultsA total of 24 studies, 3 in Chinese and 21 in English, were selected. All reports satisfy a median of 31 out of 40 reporting quality assessment items based on a quality checklist for pharmacoeconomic evaluations. 12 studies used the Markov model and 11 used the partitioned survival model. A common problem identified in the modeling methods was the insufficient justification of the choices of model structure and data inputs. Pembrolizumab was found to be cost-effective in the United States and Switzerland, but not in China, France, the UK, or Singapore.ConclusionThe current cost-effectiveness studies on pembrolizumab for the treatment of NSCLC are of moderate quality, and the relevant decision-analytic modeling methods have much scope for improvement. The cost-effectiveness of pembrolizumab strategies for NSCLC varies across countries, warranting the need to pay more attention to the methodologies of pharmacoeconomic research in order to produce correct outcomes in terms of cost-effectiveness for different countries.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021250480</p

    Clinical characteristics of the 10 HAFB-positive and TB-PCR-negative patients.

    No full text
    <p>Clinical characteristics of the 10 HAFB-positive and TB-PCR-negative patients.</p

    Nucleic Acid Amplification Testing and Sequencing Combined with Acid-Fast Staining in Needle Biopsy Lung Tissues for the Diagnosis of Smear-Negative Pulmonary Tuberculosis

    No full text
    <div><p>Background</p><p>Smear-negative pulmonary tuberculosis (PTB) is common and difficult to diagnose. In this study, we investigated the diagnostic value of nucleic acid amplification testing and sequencing combined with acid-fast bacteria (AFB) staining of needle biopsy lung tissues for patients with suspected smear-negative PTB.</p><p>Methods</p><p>Patients with suspected smear-negative PTB who underwent percutaneous transthoracic needle biopsy between May 1, 2012, and June 30, 2015, were enrolled in this retrospective study. Patients with AFB in sputum smears were excluded. All lung biopsy specimens were fixed in formalin, embedded in paraffin, and subjected to acid-fast staining and tuberculous polymerase chain reaction (TB-PCR). For patients with positive AFB and negative TB-PCR results in lung tissues, probe assays and 16S rRNA sequencing were used for identification of nontuberculous mycobacteria (NTM). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of PCR and AFB staining were calculated separately and in combination.</p><p>Results</p><p>Among the 220 eligible patients, 133 were diagnosed with TB (men/women: 76/57; age range: 17–80 years, confirmed TB: 9, probable TB: 124). Forty-eight patients who were diagnosed with other specific diseases were assigned as negative controls, and 39 patients with indeterminate final diagnosis were excluded from statistical analysis. The sensitivity, specificity, PPV, NPV, and accuracy of histological AFB (HAFB) for the diagnosis of smear-negative were 61.7% (82/133), 100% (48/48), 100% (82/82), 48.5% (48/181), and 71.8% (130/181), respectively. The sensitivity, specificity, PPV, and NPV of histological PCR were 89.5% (119/133), 95.8% (46/48), 98.3% (119/121), and 76.7% (46/60), respectively, demonstrating that histological PCR had significantly higher accuracy (91.2% [165/181]) than histological acid-fast staining (71.8% [130/181]), <i>P</i> < 0.001. Parallel testing of histological AFB staining and PCR showed the sensitivity, specificity, PPV, NPV, and accuracy to be 94.0% (125/133), 95.8% (46/48), 98.4% (125/127), 85.2% (46/54), and 94.5% (171/181), respectively. Among patients with positive AFB and negative PCR results in lung tissue specimens, two were diagnosed with NTM infections (<i>Mycobacterium avium-intracellulare</i> complex and <i>Mycobacterium kansasii</i>).</p><p>Conclusion</p><p>Nucleic acid amplification testing combined with acid-fast staining in lung biopsy tissues can lead to early and accurate diagnosis in patients with smear-negative pulmonary tuberculosis. For patients with positive histological AFB and negative tuberculous PCR results in lung tissue, NTM infection should be suspected and could be identified by specific probe assays or 16S rRNA sequencing.</p></div

    Diagnostic performance of HAFB and real-time PCR for analysis of lung biopsy specimens.

    No full text
    <p>Diagnostic performance of HAFB and real-time PCR for analysis of lung biopsy specimens.</p
    corecore