181 research outputs found

    Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion

    Full text link
    We develop a simple computational model for cell boundary evolution in plastic deformation. We study the cell boundary size distribution and cell boundary misorientation distribution that experimentally have been found to have scaling forms that are largely material independent. The cell division acts as a source term in the misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misorientation angles as observed in the experiments. We compare the results of our simulation to two closely related exactly solvable models which exhibit scaling behavior at late times: (i) fragmentation theory and (ii) a random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the scaling functions depend upon the methods used to measure sizes and to weight averages and histograms

    Quantitative characterization of plastic deformation of zircon and geological implications

    Get PDF
    The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either [01¯0] (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, [11¯0] cross slip on (111), (111¯) and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust

    Supercube grains leading to a strong cube texture and a broad grain size distribution after recrystallization

    Get PDF
    This work revisits the classical subject of recrystallization of cold-rolled copper. Two characterization techniques are combined: three-dimensional X-ray diffraction using synchrotron X-rays, which is used to measure the growth kinetics of individual grains in situ, and electron backscatter diffraction, which is used for statistical analysis of the microstructural evolution. As the most striking result, the strong cube texture after recrystallization is found to be related to a few super large cube grains, which were named supercube grains. These few supercube grains become large due to higher growth rates. However, most other cube grains do not grow preferentially. Because of the few supercube grains, the grain size distribution after recrystallization is broad. Reasons for the higher growth rates of supercube grains are discussed, and are related to the local deformed microstructure

    Comparison of K-doped and pure cold-rolled tungsten sheets: As-rolled condition and recrystallization behaviour after isochronal annealing at different temperatures

    Get PDF
    Severely deformed cold-rolled tungsten is a promising structural material for future fusion reactor applications due to high melting temperature and excellent mechanical properties. However, the fine-grained microstructure after deformation is not stable at temperatures above 800 °C, leading to brittle material behaviour. In this study, we utilize potassium-doping to inhibit recrystallization of tungsten sheets, a mechanism well known from incandescent lamp wires. We produced K-doped tungsten sheets by warm-rolling and subsequent cold-rolling with five different logarithmic strains up to 4.6, and equivalently rolled pure tungsten sheets. Both sets of materials are compared using EBSD and microhardness testing. In both materials, the hardness increases and the grain size along normal direction decreases with strain; the densities of low and high angle boundaries increase in particular during cold-rolling. The K-doped W sheet reaches the highest hardness with 772 ± 8 HV0.1, compared to the pure W sheet with 711 ± 14 HV0.1. All boundaries taken into account, a Hall-Petch relation describes the hardness evolution nicely, except a deviation of the K-doped tungsten sheet rolled to highest strain with its much higher hardness. The similar structural and mechanical properties of both materials in the as-rolled condition allow further studies of recrystallization behaviour of the new K-doped material with a benchmark against the equivalent pure tungsten sheets. Isochronal annealing for 1 h was performed at different temperatures between 700 °C and 2200 °C. A sharp decrease in hardness to intermediate values is observed at around 900 °C for both materials, presumably reflecting extended recovery. A second decrease is observed at 1400 °C for pure tungsten, approaching the hardness of a single crystal and indicating recrystallization and severe growth of grains. For K-doped tungsten, however, the occurrence of the second decrease is shifted to higher temperatures from 1400 °C to 1800 °C with increasing strain and an intermediate hardness is maintained up to 1800 °C. We refer this dependence of the recrystallization resistance on strain in the K-doped material to the dispersion of K-bubbles, resulting in increased Zener pinning forces retarding boundary motion

    X-ray determination of dislocation density and arrangement in plastically deformed copper

    Full text link

    Monitoring grain boundary migration during recrystallisation using topotomography

    Get PDF
    International audienceThe growth of a single grain during recrystallisation into a mildly deformed {001}100 oriented single crystal has been monitored by synchrotron radiation using the topotomo technique. The formation and migration of individual facets is analysed using a new method which measures distances between grain boundary segments at different time steps along parallel lines normal to the facet plane. One facet is shown to move with a constant rate, while it remains planar and keeps the same boundary plane orientation. The formation of another facet, which is analysed in detail, reveals that first a planar boundary with a different orientation forms before it changes its boundary plane orientation into that of the final facet. It is argued that the local microstructural configuration in front of moving grain boundaries has a considerable influence on the kinetics of individual boundary segments and facets

    Ultra-high angular resolution 3DXRD for observing bulk subgrains and their dynamics (talk)

    Get PDF
    • …
    corecore