7 research outputs found

    Neural Network Pruning for Real-time Polyp Segmentation

    Full text link
    Computer-assisted treatment has emerged as a viable application of medical imaging, owing to the efficacy of deep learning models. Real-time inference speed remains a key requirement for such applications to help medical personnel. Even though there generally exists a trade-off between performance and model size, impressive efforts have been made to retain near-original performance by compromising model size. Neural network pruning has emerged as an exciting area that aims to eliminate redundant parameters to make the inference faster. In this study, we show an application of neural network pruning in polyp segmentation. We compute the importance score of convolutional filters and remove the filters having the least scores, which to some value of pruning does not degrade the performance. For computing the importance score, we use the Taylor First Order (TaylorFO) approximation of the change in network output for the removal of certain filters. Specifically, we employ a gradient-normalized backpropagation for the computation of the importance score. Through experiments in the polyp datasets, we validate that our approach can significantly reduce the parameter count and FLOPs retaining similar performance

    T2FNorm: Extremely Simple Scaled Train-time Feature Normalization for OOD Detection

    Full text link
    Neural networks are notorious for being overconfident predictors, posing a significant challenge to their safe deployment in real-world applications. While feature normalization has garnered considerable attention within the deep learning literature, current train-time regularization methods for Out-of-Distribution(OOD) detection are yet to fully exploit this potential. Indeed, the naive incorporation of feature normalization within neural networks does not guarantee an improvement in OOD detection performance. In this work, we introduce T2FNorm, a novel approach to training neural networks that transforms features to hyperspherical space through normalization, while employing non-transformed space for OOD-scoring purposes. This method yields a surprising enhancement in OOD detection capabilities without compromising model accuracy in in-distribution(ID). Our investigation demonstrates that the proposed technique substantially diminishes the norm of the features of all samples, more so in the case of out-of-distribution samples, thereby addressing the prevalent concern of overconfidence in neural networks. The proposed method also significantly improves various post-hoc OOD detection methods

    Evaluation on the Efect of Pressure Transients on Rock Joints in Unlined Hydropower Tunnels Using Numerical Simulation

    No full text
    Frequent pressure transients are identified as the cause of block failures in many unlined hydropower tunnels. The primary design objective of such tunnels is to prevent hydraulic jacking at design static pressure and mass oscillation but neglects the effect of short transients, i.e., water hammer. The issue has not been studied from the perspective of hydro-mechanical interactions due to frequent pore pressure changes in the rock mass. This article mainly focuses on the effect of pressure transients at different static heads, or different effective normal stresses across the joints and the effect of time period of pressure transient. Further, the change in such behaviour due to different mechanical properties of rock joints, such as stiffness, friction angle and dilation, is investigated. Numerical simulations of observed pore pressure response in the rock mass during a pressure transient are carried out using distinct element code 3DEC. The results show that relative joint deformation due to short pressure transients are the highest when joint normal stresses are 1.5–2.5 times higher than static water pressure in the tunnel and thus the vulnerability to weakening of such joints by hydraulic fatigue is higher. Further, results show that water hammers can travel up to 4 m into the rock mass even in stiff joint conditions and sufficiently high normal stresses. Results further indicate that the hydraulic impact due to water hammer is smaller as compared to mass oscillation. It is concluded that water hammers, wherever applicable along the waterway, can still contribute to hydraulic fatigue of rock joints in addition to the effect of mass oscillation and cannot be neglected when pressure transients occur frequently. Tunnel filling/dewatering and mass oscillations cause macroscopic joint displacements or block movements over long-term operation which is the major cause of block falls in unlined pressure tunnels

    Evaluation on the Potential Use of Shotcrete Lined High Pressure Tunnel at Upper Tamakoshi Hydroelectric Project

    No full text
    Optimization of rock support is a key for the successful use of underground space for hydropower development in the Himalaya. Therefore, finding innovative, optimum and economic solution will be the only way to guarantee on such optimization. A main issue is to find out the extent of hydraulic fracturing and access the water leakage possibility during the operation of such tunnels. The leaked water not only causes economic loss but also may severely affect the stability of tunnel, valley side slopes and the environment. The use of fully concrete/steel lined pressure tunnels against hydraulic fracturing in the rock mass is of costly solution. Hence, it is advantageous to explore possibilities of minimizing the length of the concrete or steel lining in high pressure tunnels and shafts. A proper assessment of hydraulic fracturing of the rock mass plays an important role in this endeavor. This paper evaluates whether or not hydraulic fracturing (splitting) will occur at the 4750m long shotcrete-lined high pressure headrace tunnel of 456 MW Upper Tamakoshi Hydroelectric Project (UTKHEP). The Upper Tamakoshi HEP is a high head project (gross head 822m) and the proposed shotcrete lined high pressure headrace tunnel will experience maximum hydrostatic pressure head of 40 bar (400m water column) at normal plant operation. To check the possibility of hydraulic fracturing, both deterministic and two dimensional numerical modeling techniques have been used. In addition, the paper also highlights the importance and challenges to be faced while estimating representative input variables needed for both deterministic and numerical modellin

    Operation of Norwegian Hydropower Plants and Its Effect on Block Fall Events in Unlined Pressure Tunnels and Shafts

    No full text
    The main objective of this study is to investigate the effect of hydropower plant operation on the long-term stability of unlined pressure tunnels of hydropower plants in Norway. The authors analyzed the past production data of some hydropower plants to find out the number of starts/stops and the frequency and magnitude of load changes. The study demonstrates that an average of 200–400 start/stop events are occurring per turbine per year for the analyzed period, with an increasing trend. Currently, 150–200 large load changes per turbine smaller than 50 MW are occurring every year, and this is expected to increase by 30–45% between 2025 and 2040 for one of the studied power plants. Most importantly, the monitored pressure transients and pore pressure response in the rock mass during real-time operation at Roskrepp power plant are presented. A new method is proposed to calculate and quantify the hydraulic impact (HI) of pressure transients on rock joints and the effect of duration of shutdown/opening, which is found to be the most dominant parameter affecting the magnitude. The results show that faster shutdown sequences cause unnecessary stress in rock mass surrounding pressure tunnel. The hydraulic impact (HI) can be more than 10 times higher when the shutdown duration is reduced by 50 percent. The study recommends that duration of normal shutdowns/openings in hydropower plants should be slower so that hydraulic impacts on the rock joints are reduced and cyclic hydraulic fatigue is delayed, prolonging the lifetime of unlined pressure tunnels and shafts

    The double target sign as ultrasonographic finding in a case of double intussusception: A case report

    No full text
    Intussusception is one of the common conditions in children presenting with abdominal pain. The exact etiology of intussusception is unknown. Lead point is not identified in the majority of cases in children. Commonly, radiographic evidence suggests the presence of a target sign is diagnosis of intussusception. However, the presence of a double target sign in the case of intussusception is rare and depicts the presence of double intussusception. We present a case report of a 1-year-old child who presented to the emergency department with excessive crying for more than 10 hours. After the initial clinical assessment and acute management, an abdominal ultrasound revealed a double target sign on the sub-hepatic and left para-umbilical region which suggested double intussusception. No lead point was identified in our case. Early diagnosis and prompt treatment are the mainstay of management in such cases
    corecore