3 research outputs found

    Vitamin D Receptor Fokl polymorphism is a determinant of both maternal and neonatal Vitamin D concentrations at birth

    Get PDF
    © 2019 Elsevier Ltd Maternal vitamin D deficiency is considered to be the key determinant of the development of neonatal vitamin D deficiency at birth and during early infancy. Specific vitamin D receptor (VDR) gene polymorphisms have been associated with adverse pregnancy and offspring outcomes. The aim of this study was to evaluate the effect of maternal and neonatal VDR polymorphisms (ApaI, TaqI, BsmI, FokI, Tru9I) on maternal and neonatal vitamin D status. VDR polymorphisms were genotyped in 70 mother-neonate pairs of Greek origin, and classified according to international thresholds for Vitamin D status. Mean neonatal and maternal 25-hydroxy-vitamin D [25(OH)D] concentrations were 35 ± 20 and 47 ± 26 nmol/l, respectively. Neonatal VDR polymorphisms were not associated with neonatal 25(OH)D concentrations. In contrast, mothers with the Fokl FF polymorphism had a 70 % lower risk of vitamin D deficiency [25(OH)D \u3c30 nmol/l] compared with ff ones, after adjustment for several confounders. They were also in 73 % and 88 % lower risk of giving birth to vitamin D deficient [25(OH)D \u3c30 nmol/l] neonates compared with Ff and ff mothers, respectively. These results suggest a protective role of maternal Fokl FF genotype against both maternal and neonatal vitamin D deficiency. Further studies are needed to clarify the complex gene-gene and gene-environment interactions that determine vitamin D status at birth

    Effects of Home-Based Exercise Training on Cardiac Autonomic Neuropathy and Metabolic Profile in Diabetic Hemodialysis Patients

    No full text
    Background: This study aimed to investigate the effects of a home-based exercise training program on Cardiac Autonomic Neuropathy (CAN) and metabolic profile in Diabetic Kidney Disease (DKD) patients undergoing maintenance hemodialysis (HD). Method: Twenty-eight DKD patients undergoing hemodialysis were randomly assigned into two groups. The exercise (EX) group followed a 6-month combined exercise training program at home, while the control (CO) group remained untrained. All participants at baseline and the end of the study underwent cardiopulmonary exercise testing (CPET), biochemical tests for glucose and lipid profile, and 24-h electrocardiographic monitoring for heart rate variability (HRV) analysis and heart rate turbulence (HRT). Results: At the end of the study, compared to the CO, the EX group showed a significant increase in serum high-density lipoprotein (HDL) by 27.7% (p = 0.01), peak oxygen uptake (VO2peak) by 9.3% (p p = 0.03), percentage of successive RR intervals higher than 50ms (pNN50) by 51.1% (p = 0.02), turbulence slope (TS) index by 18.4% (p = 0.01), and decrease in (glycated hemoglobin) HbA1c by 12.5% (p = 0.04) and low-frequency power LF (ms2) by 29.7% (p = 0.01). Linear regression analysis after training showed that VO2peak was correlated with SDNN (r = 0.55, p = 0.03) and HF (r = 0.72, p = 0.02). Multiple regression analysis indicated that the improvement of sympathovagal balance and aerobic capacity depended on patients’ participation in exercise training. Conclusion: In conclusion, a 6-month home-based mixed-type exercise program can improve cardiac autonomic function and metabolic profile in DKD patients on HD
    corecore