8 research outputs found

    Quantifying Electrophoretic Deposition of Nanocrystal Superlattices Using Quartz Crystal Microbalance

    Get PDF
    Please click Additional Files below to see the full abstract

    Controlled electrochemical growth of ultra-long gold nanoribbons

    Get PDF
    Citation: Basnet, G., Panta, K. R., Thapa, P. S., & Flanders, B. N. (2017). Controlled electrochemical growth of ultra-long gold nanoribbons. Applied Physics Letters, 110(7), 5. doi:10.1063/1.4976027This paper describes the electrochemical growth of branchless gold nanoribbons with similar to 40 nm x similar to 300 nm cross sections and >100 mu m lengths (giving length-to-thickness aspect ratios of > 10(3)). These structures are useful for opto-electronic studies and as nanoscale electrodes. The 0.75-1.0V voltage amplitude range is optimal for branchless ribbon growth. Reduced amplitudes induce no growth, possibly due to reversible redox chemistry of gold at reduced amplitudes, whereas elevated amplitudes, or excess electrical noise, induce significant side-branching. The inter-relatedness of voltage-amplitude, noise, and side-branching in electrochemical nanoribbon growth is demonstrated. Published by AIP Publishing

    Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT

    Get PDF
    Assessment of disease burden and drug efficacy is achieved preclinically using high resolution micro computed tomography (CT). However, micro-CT is not applicable to clinical human imaging due to operating at high dose. In addition, the technology differences between micro-CT and standard clinical CT prevent direct translation of preclinical applications. The current proof-of-concept study presents spectral photon-counting CT as a clinically translatable, molecular imaging tool by assessing contrast uptake in an ex-vivo mouse model of pulmonary tuberculosis (TB). Iodine, a common contrast used in clinical CT imaging, was introduced into a murine model of TB. The excised mouse lungs were imaged using a standard micro-CT subsystem (SuperArgus) and the contrast enhanced TB lesions quantified. The same lungs were imaged using a spectral photoncounting CT system (MARS small-bore scanner). Iodine and soft tissues (water and lipid) were materially separated, and iodine uptake quantified. The volume of the TB infection quantified by spectral CT and micro-CT was found to be 2.96 mm(3) and 2.83 mm(3), respectively. This proof-of-concept study showed that spectral photon-counting CT could be used as a predictive preclinical imaging tool for the purpose of facilitating drug discovery and development. Also, as this imaging modality is available for human trials, all applications are translatable to human imaging. In conclusion, spectral photon-counting CT could accelerate a deeper understanding of infectious lung diseases using targeted pharmaceuticals and intrinsic markers, and ultimately improve the efficacy of therapies by measuring drug delivery and response to treatment in animal models and later in humans
    corecore