2,438 research outputs found
EFFECT OF ANCHORING ON PERCEIVED AMNIOCENTESIS RELATED MISCARRIAGE RISK WITHIN A LATINA POPULATION
Most recognized pregnancies are completed without difficulty, yet there is always a 3-5% background risk to have a child with a birth defect. Amniocentesis, the most common type of prenatal diagnostic test, is used to detect chromosomal abnormalities, such as Down syndrome. Amniocentesis is associated with a risk of complications that can lead to a miscarriage, which is typically quoted to be between 1 in 300 and 1 in 500. Amniocentesis uptake rates are typically lowest within the Latina community, and although the factors related to this have been studied before, no specific conclusions have been reached.
The general population has a difficult time interpreting risks, as individuals vary in numeracy skills as well as personal factors that can influence risk perception. A recent study by Nuccio (2010) investigated the effect of anchoring, where a patient’s prior knowledge about a subject affects her risk perception, and how it relates to the uptake of amniocentesis within a diverse population in Houston, TX. The effect of anchoring on perceived amniocentesis-related miscarriage risk within the Latina population has not been previously examined.
A two-part questionnaire was completed by 96 Latinas receiving prenatal genetic counseling due to an increased risk to have a baby with a chromosome abnormality at various clinics in Houston, TX. The genetic counselor involved in the session completed a separate survey. This population was largely unfamiliar with surveys, risk figures, and prenatal testing. Only one individual was able to quantify the risk associated with amniocentesis prior to the genetic counseling. While the majority of women felt that the risk association with amniocentesis is very low to average, only 7 individuals pursued diagnostic testing through amniocentesis. Most women did not feel like the information gained from an amniocentesis would change the management of their pregnancy and/or they did not believe that their baby had a problem. Women, regardless of ethnicity, deserve individualized genetic counseling sessions that cater to their needs and desires regarding their prenatal care
Information Theory Perspective on Network Robustness
A crucial challenge in network theory is the study of the robustness of a
network after facing a sequence of failures. In this work, we propose a
dynamical definition of network's robustness based on Information Theory, that
considers measurements of the structural changes caused by failures of the
network's components. Failures are defined here, as a temporal process defined
in a sequence. The robustness of the network is then evaluated by measuring
dissimilarities between topologies after each time step of the sequence,
providing a dynamical information about the topological damage. We thoroughly
analyze the efficiency of the method in capturing small perturbations by
considering both, the degree and distance distributions. We found the network's
distance distribution more consistent in capturing network structural
deviations, as better reflects the consequences of the failures. Theoretical
examples and real networks are used to study the performance of this
methodology.Comment: 5 pages, 2 figures, submitte
Diffusion capacity of single and interconnected networks
Understanding diffusive processes in networks is a significant challenge in complexity science. Networks possess a diffusive potential that depends on their topological configuration, but diffusion also relies on the process and initial conditions. This article presents Diffusion Capacity, a concept that measures a node’s potential to diffuse information based on a distance distribution that considers both geodesic and weighted shortest paths and dynamical features of the diffusion process. Diffusion Capacity thoroughly describes the role of individual nodes during a diffusion process and can identify structural modifications that may improve diffusion mechanisms. The article defines Diffusion Capacity for interconnected networks and introduces Relative Gain, which compares the performance of a node in a single structure versus an interconnected one. The method applies to a global climate network constructed from surface air temperature data, revealing a significant change in diffusion capacity around the year 2000, suggesting a loss of the planet’s diffusion capacity that could contribute to the emergence of more frequent climatic events.Research partially supported by Brazilian agencies FAPEMIG, CAPES, and CNPq. P.M.P. acknowledges support from the “Paul and Heidi Brown Preeminent Professorship in ISE, University of Florida”, and RSF 14-41- 00039, Humboldt Research Award (Germany) and LATNA, Higher School of Economics, RF. C.M. acknowledges partial support from Spanish MINECO (PID2021-123994NB-C21) and ICREA ACADEMIA. A.D.- G. knowledges support from the Spanish grants PGC2018-094754-BC22 and PID2021-128005NB-C22, funded by MCIN/AEI/ 10.13039/ 501100011033 and “ERDF A way of making Europe”; and from Generalitat de Catalunya (2021SGR00856). M.G.R acknowledges partial support from FUNDEP.Peer ReviewedPostprint (published version
p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression
p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics
Blood titanium levels in patients with large and sliding titanium implants
Background: Titanium, which is known to be a highly biologically inert element, is one of the most commonly used metals in orthopaedic implants. While cobalt and chromium blood metal ion testing is routinely used in the clinical monitoring of patients with metal-on-metal hip implants, much less is known about the levels of titanium in patients with other implant types. The aim of this study was to better understand the normal ranges of blood titanium levels in patients implanted with large and sliding titanium constructs by comparison with reference levels from conventional titanium hips. Methods: This study examined data collected from 136 patients. Over a period of 24 months, whole blood samples were collected from 41 patients implanted with large titanium implants: long (range 15 to 30 cm) spine rods with a sliding mechanism (“spine rods”, n = 18), long bone tumour implants (“tumour implants”, n = 13) and 3D-printed customised massive acetabular defect implants (“massive acetabular implants”, n = 10). This data was compared with standard, uncemented primary titanium hip implants (“standard hips”, 15 cm long) (n = 95). Clinical, imaging and blood titanium levels data were collected for all patients and compared statistically between the different groups. Results: The median (range) of blood titanium levels of the standard hip, spine rods, femoral tumour implants and massive acetabular implants were 1.2 ppb (0.6–4.9), 9.7 ppb (4.0–25.4), 2.6 ppb (0.4–104.4) and 5.7 ppb (1.6–31.5) respectively. Spine rods and massive acetabular implants had significantly greater blood titanium levels compared to the standard hips group (p < 0.001). Conclusion: This study showed that titanium orthopaedic implants that are large and/or have a sliding mechanism have higher blood titanium levels compared to well-functioning, conventionally sized titanium hips. Reassuringly, the increased levels did not appear to induce adverse metal reactions. This study provides useful baseline data for future studies aimed at assessing blood titanium levels as a biomarker for implant function
Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype
BACKGROUND: Cadherins are essential components of the adherens junction complexes that mediate cell-cell adhesion and regulate cell motility. During tissue morphogenesis, changes in cadherin expression (known as cadherin switching) are a common mechanism for altering cell fate. Cadherin switching is also common during epithelial tumor progression, where it is thought to promote tumor invasion and metastasis. E-cadherin is the predominant cadherin expressed in epithelial tissues, but its expression is very limited in normal brain. METHODOLOGY/PRINCIPAL FINDINGS: We identified E-cadherin expression in a retrospective series of glioblastomas exhibiting epithelial or pseudoepithelial differentiation. Unlike in epithelial tissues, E-cadherin expression in gliomas correlated with an unfavorable clinical outcome. Western blotting of two panels of human GBM cell lines propagated either as xenografts in nude mice or grown under conventional cell culture conditions confirmed that E-cadherin expression is rare. However, a small number of xenograft lines did express E-cadherin, its expression correlating with increased invasiveness when the cells were implanted orthotopically in mouse brain. In the conventionally cultured SF767 glioma cell line, E-cadherin expression was localized throughout the plasma membrane rather than being restricted to areas of cell-cell contact. ShRNA knockdown of E-cadherin in these cells resulted in decreased proliferation and migration in vitro. CONCLUSIONS/SIGNIFICANCE: Our data shows an unexpected correlation between the abnormal expression of E-cadherin in a subset of GBM tumor cells and the growth and migration of this aggressive brain tumor subtype
Oxygen saturation measurements from green and orange illuminations of multi-wavelength optoelectronic patch sensors
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Photoplethysmography (PPG) based pulse oximetry devices normally use red and infrared illuminations to obtain oxygen saturation (SpO2) readings. In addition, the presence of motion artefacts severely restricts the utility of pulse oximetry physiological measurements. In the current study, a combination of green and orange illuminations from a multi-wavelength optoelectronic patch sensor (mOEPS) was investigated in order to improve robustness to subjects’ movements in the extraction of SpO2 measurement. The experimental protocol with 31 healthy subjects was divided into two sub-protocols, and was designed to determine SpO2 measurement. The datasets for the first sub-protocol were collected from 15 subjects at rest, with the subjects free to move their hands. The datasets for the second sub-protocol with 16 subjects were collected during cycling and walking exercises. The results showed good agreement with SpO2 measurements (r = 0.98) in both sub-protocols. The outcomes promise a robust and cost-effective approach of physiological monitoring with the prospect of providing health monitoring that does not restrict user physical movements
Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode
We report on the results of the search for dark photons with mass around
1.5 using a multilayer dielectric haloscope equipped with an
affordable and commercially available photosensor. The multilayer stack, which
enables the conversion of dark photons (DP) to Standard Model photons, is made
of 23 bilayers of alternating SiO and SiN thin films with linearly
increasing thicknesses through the stack (a configuration known as a "chirped
stack"). The thicknesses have been chosen according to an optimisation
algorithm in order to maximise the DP-photon conversion in the energy region
where the photosensor sensitivity peaks. This prototype experiment, baptised
MuDHI (Multilayer Dielectric Haloscope Investigation) by the authors of this
paper, has been designed, developed and run at the Astroparticle Laboratory of
New York University Abu Dhabi, which marks the first time a dark matter
experiment has been operated in the Middle East. No significant signal excess
is observed, and the method of maximum log-likelihood is used to set exclusion
limits at confidence level on the kinetic mixing coupling constant
between dark photons and ordinary photons
Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma
BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. The purpose of this study is to define a biological pathway signature and a cellular differentiation program in ccRCC. METHODOLOGY: We performed gene expression profiling of early-stage ccRCC and patient-matched normal renal tissue using Affymetrix HG-U133a and HG-U133b GeneChips combined with a comprehensive bioinformatic analyses, including pathway analysis. The results were validated by real time PCR and IHC on two independent sample sets. Cellular differentiation experiments were performed on ccRCC cell lines and their matched normal renal epithelial cells, in differentiation media, to determine their mesenchymal differentiation potential. PRINCIPAL FINDINGS: We identified a unique pathway signature with three major biological alterations-loss of normal renal function, down-regulated metabolism, and immune activation-which revealed an adipogenic gene expression signature linked to the hallmark lipid-laden clear cell morphology of ccRCC. Culturing normal renal and ccRCC cells in differentiation media showed that only ccRCC cells were induced to undergo adipogenic and, surprisingly, osteogenic differentiation. A gene expression signature consistent with epithelial mesenchymal transition (EMT) was identified for ccRCC. We revealed significant down-regulation of four developmental transcription factors (GATA3, TFCP2L1, TFAP2B, DMRT2) that are important for normal renal development. CONCLUSIONS: ccRCC is characterized by a lack of epithelial differentiation, mesenchymal/adipogenic transdifferentiation, and pluripotent mesenchymal stem cell-like differentiation capacity in vitro. We suggest that down-regulation of developmental transcription factors may mediate the aberrant differentiation in ccRCC. We propose a model in which normal renal epithelial cells undergo dedifferentiation, EMT, and adipogenic transdifferentiation, resulting in ccRCC. Because ccRCC cells grown in adipogenic media regain the characteristic ccRCC phenotype, we have identified a new in vitro ccRCC cell model more resembling ccRCC tumor morphology
- …