18 research outputs found

    RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae

    Get PDF
    Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails

    Dissecting the Roles of Divergent and Convergent Transcription in Chromosome Instability

    Get PDF
    Summary: The interplay of transcription, topological tension, and chromosome breakage is a subject of intense interest, but, with so many facets to the problem, it is difficult to test. Here, we vary the orientation of promoters relative to one another in a yeast system that permits sensitive detection of chromosome breaks. Interestingly, convergent transcription that would direct RNA polymerases into one another does not increase chromosome breakage. In contrast, divergent transcription that would create underwound and potentially single-stranded DNA does cause a marked increase in chromosome breakage. Furthermore, we examine the role that topoisomerases are playing in preventing genome instability at these promoters and find that Top2 is required to prevent instability at converging promoters. : Pannunzio and Lieber demonstrate that, in wild-type cells, divergent, but not convergent, transcription increases genome instability measured by gross chromosomal rearrangements. For convergent promoters, the function of topoisomerase II is critical for preventing instability at convergent promoters

    The Strength of an Ig Switch Region Is Determined by Its Ability to Drive R Loop Formation and Its Number of WGCW Sites

    Get PDF
    R loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR). G-clusters increase CSR regardless of their immediate proximity to the WGCW sites. This increase is accompanied by an increase in R loop formation. CSR efficiency correlates better with the absolute number of WGCW sites in the switch region rather than the total switch region length or density of WGCW sites. Thus, the overall strength of the switch region depends on G-clusters, which initiate R loop formation, and on the number of WGCW sites
    corecore