18 research outputs found

    Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation

    Get PDF
    BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation

    TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer

    Calcium and cancer: targeting Ca2+ transport

    No full text
    Ca2+ is a ubiquitous cellular signal. Altered expression of specific Ca2+ channels and pumps are characterizing features of some cancers. The ability of Ca2+ to regulate both cell death and proliferation, combined with the potential for pharmacological modulation, offers the opportunity for a set of new drug targets in cancer. However, the ubiquity of the Ca2+ signal is often mistakenly presumed to thwart the specific therapeutic targeting of proteins that transport Ca2+. This Review presents evidence to the contrary and addresses the question: which Ca2+ channels and pumps should be targeted
    corecore