750 research outputs found
Acousto-optic tunable filters (AOTFs) optimised for operation in the 2-4μm region
Acousto-Optic Tunable Filters (AOTFs) are electronically-controlled bandpass optical filters. They are often preferred in applications in spectroscopy where their agility and rapid random-access tuning can be deployed to advantage. When used for spectral imaging a large aperture (typically 10mm or more) is desired in order to permit sufficient optical throughput. However, in the mid IR the λ2 dependence on RF drive power combined with the large aperture can prove to be a hurdle, often making them impractical for many applications beyond about 2μm. We describe and compare a series of specialised free-space configurations of AOTF made from single crystal tellurium dioxide, that require relatively low RF drive power. We report on AOTFs specifically optimised for operation with a new generation of Supercontinuum source operating in the 2-4μm window and show how these may be used in a spectral imaging system. Finally, we describe an AOTF with an (acoustic) Fabry-Perot cavity operating at acoustic resonance rather than the conventional travelling-wave mode; the acoustic power requirement therefore being reduced. We present an analysis of the predicted performance. In addition, we address the practical issues in deploying such a scheme and outline the design of a prototype "resonant AOTF" operating in the 1-2μm region
Wanted Dead or Alive? The Relative Value of Reef Sharks as a Fishery and an Ecotourism Asset in Palau
Over the last 20 years, ecotourism to view and interact with marine megafauna has become increasingly popular (Higham and Lück 2008). Examples of this type of tourism include turtle and whale watching, snorkelling with seals and shark diving (Jacobson and Robles 1992; Anderson and Ahmed 1993; Orams 2002; Kirkwood et al. 2003; Dearden et al. 2008; Dicken and Hosking 2009). The occurrence of many aggregations of megafauna along the coasts of regional areas remote from centres of population means that such tourism also provides significant flow-on effects and diversification to local economies where few alternative sources of income exist (Milne 1990; Garrod and Wilson 2004). Importantly, the development of a well-managed ecotourism industry based on megafauna provides the opportunity for local people to utilise natural resources in a sustainable manner over the long-term (Mau 2008). The economic value of tourism based on marine megafauna is enormous. In 2008, a study of whale watching estimated that this form of tourism was available in 119 countries, involved approximately 13 million participants and generated an income to operators and supporting businesses (hotels, restaurants and souvenirs) of over US2.5 billion (Cisneros-Montemayor et al. 2010). The development of whale watching has been paralleled by growth in tourism based on other types of marine megafauna. In particular, tourism to observe sharks and rays has become increasingly common. At the forefront of this relatively new market are industries that focus on whale sharks (Rhincodon typus) with estimates calculated in 2004 suggesting that these generated more than US$47.5 million worldwide, providing important revenues to developing countries such as Ecuador, Thailand and Mozambique (Graham 2004). Diving with other species of sharks has followed a similar trend of growing popularity. In 2005, it was estimated that approximately 500,000 divers were engaged in shark-diving activities worldwide (Topelko and Dearden 2005). An increasing range of opportunities for this type of tourism are available, including cage diving, shark feeding and drift diving with reef and oceanic sharks. Shark-diving tourism can be found in more than 40 countries (Carwardine and Watterson 2002), with new destinations and target species being established rapidly, due to the increasing recognition of the economic potential of this activity (Dicken and Hosking 2009; De la Cruz Modino et al. 2010)
The Socio-Economic Value of the Shark-Diving Industry in Fiji
Based on a survey of divers, dive operators, resort managers, estimates business revenues from shark diving and related expenditures by area; tax revenues; and economic benefit to local communities
Effective information and the influence of an extension event on perceptions and adoption
Perceptions are known to play an important role in the innovation adoption decision. Once influential perceptions have been identified, there is the potential for information to influence adoption by changing these perceptions. In this paper, the influence of an extension workshop targeting grain growers’ perceptions known to be associated with the adoption of integrated weed management and herbicide resistance management has been measured using regression analysis. Consistent with a Bayesian learning framework, the greatest influence on grower perceptions and intended adoption behaviour was observed where information could be delivered with a high degree of certainty and validity.Crop Production/Industries, Farm Management,
Acousto-optic tunable filters for imaging applications in the 2-4~μm with low RF drive power
The λ2 dependence on acoustic field intensity (and hence RF drive power) can render large aperture acousto-optic tunable filters impractical for many applications beyond about 2 μm. One potential technique for reducing the RF drive-power requirement is to configure an acousto-optic tunable filter such that the interaction region is at acoustic resonance. We describe an acousto-optic tunable filter that operates at resonance and present an analysis of the predicted performance. In addition, we address the practical issues in deploying such a scheme. Finally, we present results of a prototype "resonant acousto-optic tunable filter" operating in the 1-2 μm region
ADOPT: a tool for predicting adoption of agricultural innovations
A wealth of evidence exists about the adoption of new practices and technologies in agriculture but there does not appear to have been any attempt to simplify this vast body of research knowledge into a model to make quantitative predictions across a broad range of contexts. This is despite increasing demand from research, development and extension agencies for estimates of likely extent of adoption and the likely timeframes for project impacts. This paper reports on the reasoning underpinning the development of ADOPT (Adoption and Diffusion Outcome Prediction Tool). The tool has been designed to: 1) predict an innovation‘s likely peak extent of adoption and likely time for reaching that peak; 2) encourage users to consider the influence of a structured set of factors affecting adoption; and 3) engage R, D & E managers and practitioners by making adoptability knowledge and considerations more transparent and understandable. The tool is structured around four aspects of adoption: 1) characteristics of the innovation, 2) characteristics of the population, 3) actual advantage of using the innovation, and 4) learning of the actual advantage of the innovation. The conceptual framework used for developing ADOPT is described.Adoption, Diffusion, Prediction, Research and Development/Tech Change/Emerging Technologies,
Imaging AOTFs with low RF Power in deep-UV and mid-IR
Acousto-Optic Tunable Filters (AOTFs) are commonly used for applications where high speed tuning and narrow spectral resolu- tion are required. The RF drive power for peak diffraction efficiency increases as λ2 and depends on the acousto-optic figure of merit (M2), which is material dependent. In the VIS-IR region between 450 nm and 4.5 μm tellurium dioxide (TeO2) is the common material of choice due to the high M2. At longer wavelengths (up to about 12 μm) the mercurous halides and single crystal tellurium show promise. In both cases the λ2 dependency dominates the RF power consumption and for wavelengths beyond 3.5 μm the RF power consumption is above the practical limit (>5W) for larger aperture AOTF(> 10 mm × 10 mm). In the UV range (200 nm – 400 nm) the λ2 dependency is no longer dominant and the power consumption depends mainly on the M2,however, for most materials transparent in the UV the M2 is poor and thus the drive power will again be excessive (>5W). In order to reduce the RF power requirement to reach peak diffraction efficiency, a resonant configuration in crystal quartz shows promise, especially in the UV range due to its low acoustic attenuation. We describe an AOTF operating in resonance made of crystal quartz, where the reduction of RF power consumption will be reduced by a factor between 15 and 20 compared to a conventional AOTF, thus reducing the power consumption to be within the practical limit (<5W)
Two's Company, Three's a Crowd: Experimental Evaluation of the Evolutionary Maintenance of Trioecy in Mercurialis annua (Euphorbiaceae)
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely
Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifer
- …