14 research outputs found

    Early brain morphometrics from neonatal MRI predict motor and cognitive outcomes at 2-years corrected age in very preterm infants

    Get PDF
    Infants born very preterm face a range of neurodevelopmental challenges in cognitive, language, behavioural and/or motor domains. Early accurate identification of those at risk of adverse neurodevelopmental outcomes, through clinical assessment and Magnetic Resonance Imaging (MRI), enables prognostication of outcomes and the initiation of targeted early interventions. This study utilises a prospective cohort of 181 infants born <31 weeks gestation, who had 3T MRIs acquired at 29-35 weeks postmenstrual age and a comprehensive neurodevelopmental evaluation at 2 years corrected age (CA). Cognitive, language and motor outcomes were assessed using the Bayley Scales of Infant and Toddler Development – Third Edition and functional motor outcomes using the Neuro-sensory Motor Developmental Assessment. By leveraging advanced structural MRI pre-processing steps to standardise the data, and the state-of-the-art developing Human Connectome Pipeline, early MRI biomarkers of neurodevelopmental outcomes were identified. Using Least Absolute Shrinkage and Selection Operator (LASSO) regression, significant associations between brain structure on early MRIs with 2-year outcomes were obtained (r = 0.51 and 0.48 for motor and cognitive outcomes respectively) on an independent 25% of the data. Additionally, important brain biomarkers from early MRIs were identified, including cortical grey matter volumes, as well as cortical thickness and sulcal depth across the entire cortex. Adverse outcome on the Bayley-III motor and cognitive composite scores were accurately predicted, with an Area Under the Curve of 0.86 for both scores. These associations between 2-year outcomes and patient prognosis and early neonatal MRI measures demonstrate the utility of imaging prior to term equivalent age for providing earlier commencement of targeted interventions for infants born preterm

    Future Logistics: What to Expect, How to Adapt

    No full text
    As a result of global societal and economic as well as technological developments logistics and supply chains face unprecedented challenges. Climate change, the need for more sustainable products and processes, major political changes, the advance of “Industry 4.0” and cyber-physical system are some of the challenges that require radical solutions, but also present major opportunities. The authors argue that logistics has to reinvent itself, not only to address these chal-lenges but also to cope with mass individualization on the one hand while exploit-ing broad-fielded business applications of artificial intelligence on the other hand. An essential challenge will be to find a compromise between these two develop-ments – in line and in combination with the known triple-bottom line for sustaina-bility – that will define supply chains and logistics concepts of the future

    Ellipsoidal tube MPC of robots carrying glass plates

    No full text

    Predicting motor and cognitive outcomes from MRIs of brain structure in children with acquired brain injury: A pilot study

    No full text
    Background: Acquired Brain Injury (ABI) describes a range of brain injuries occurring after birth, including tumor, traumatic brain injury or stroke. Although MRIs are routinely used for diagnosis, prediction of outcome following brain injury is challenging. Quantitative structural information from brain images may provide an opportunity to predict patient outcomes; however, due to the high prevalence of severe pathology in children with ABI, quantitative approaches must be robust to injury severity. Methods: In this pilot cross-sectional study, automated quantitative measures were extracted from the MRIs of a cohort of children with ABI (n = 30, 8–16 years, follow up MRI taken 1.8–13.4 years after time of injury) as well as 36 typically developing controls with no brain injury (7–17 years) using a pathology-robust technique. Measures of brain volume, lesion volume and cortical morphology were associated with concurrent motor, behavioral, visual and communicative function using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Results: These regression models were validated on a separate test set (n = 8 of the ABI cohort), which revealed significant correlations between measures of brain structure with motor, cognitive, visual and communicative function (r = 0.65–0.85, all p < 0.01). Furthermore, comparisons of the structural measures to the typically developing cohort revealed overall reductions in global grey matter volume among the ABI cohort, as well as cortical thinning in several cortical areas. Conclusions: These preliminary associations reveal that motor and behavioral function can be estimated from MRI alone, highlighting the potential utility of the proposed pathology-robust MRI quantification tools to provide estimates of long-term clinical prognosis of children with ABI following injury

    Understanding the impact of bilateral brain injury in children with unilateral cerebral palsy

    No full text
    The presence of bilateral brain injury in patients with unilateral cerebral palsy (CP) may impact neuroplasticity in the ipsilateral hemisphere; however, this pattern of injury is typically under-analyzed due to the lack of methods robust to severe injury. In this study, injury-robust methods have been applied to structural brain magnetic resonance imaging (MRI) data of a cohort of 91 children with unilateral CP (37 with unilateral and 54 with bilateral brain injury, 4-17 years) and 44 typically developing controls (5-17 years), to determine how brain structure is associated with concurrent motor function, and if these associations differ between patients with unilateral or bilateral injury. Regression models were used to associate these measures with two clinical scores of hand function, with patient age, gender, brain injury laterality, and interaction effects included. Significant associations with brain structure and motor function were observed (Pearson's r = .494-.716), implicating several regions of the motor pathway, and demonstrating an accurate prediction of hand function from MRI, regardless of the extent of brain injury. Reduced brain volumes were observed in patients with bilateral injury, including volumes of the thalamus and corpus callosum splenium, compared to those with unilateral injury, and the healthy controls. Increases in cortical thickness in several cortical regions were observed in cohorts with unilateral and bilateral injury compared to controls, potentially suggesting neuroplasticity might be occurring in the inferior frontal gyrus and the precuneus. These findings identify prospective useful target regions for transcranial magnetic stimulation intervention

    Brain microstructure and morphology of very preterm-born infants at term equivalent age: associations with motor and cognitive outcomes at 1 and 2 years

    No full text
    Very preterm-born infants are at risk of adverse neurodevelopmental outcomes. Brain magnetic resonance imaging (MRI) at term equivalent age (TEA) can probe tissue microstructure and morphology, and demonstrates potential in the early prediction of outcomes. In this study, we use the recently introduced fixel-based analysis method for diffusion MRI to investigate the association between microstructure and morphology at TEA, and motor and cognitive development at 1 and 2 years corrected age (CA). Eighty infants bor

    Investigating brain age deviation in preterm infants: a deep learning approach

    No full text
    This study examined postmenstrual age (PMA) estimation (in weeks) from brain diffusion MRI of very preterm born infants (bor

    Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model

    No full text
    Background and aims: Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 years from early brain diffusion magnetic resonance imaging (MRI) acquired between 29 and 35 weeks postmenstrual age (PMA) using a deep learning convolutional neural network (CNN) model. Methods: Seventy-seven very preterm infants (bor

    Protocol for a multisite randomised trial of Hand–Arm Bimanual Intensive Training Including Lower Extremity training for children with bilateral cerebral palsy: HABIT-ILE Australia

    No full text
    INTRODUCTION: Children with bilateral cerebral palsy often experience difficulties with posture, gross motor function and manual ability, impacting independence in daily life activities, participation and quality of life (QOL). Hand-Arm Bimanual Intensive Training Including Lower Extremity (HABIT-ILE) is a novel intensive motor intervention integrating upper and lower extremity training. This study aimed to compare HABIT-ILE to usual care in a large randomised controlled trial (RCT) in terms of gross motor function, manual ability, goal attainment, walking endurance, mobility, self-care and QOL. A within-trial cost-utility analysis will be conducted to synthesise costs and benefits of HABIT-ILE compared with usual care. METHODS AND ANALYSIS: 126 children with bilateral cerebral palsy aged 6-16 years will be recruited across three sites in Australia. Children will be stratified by site and Gross Motor Function Classification System and randomised using concealed allocation to either receiving HABIT-ILE immediately or being waitlisted for 26 weeks. HABIT-ILE will be delivered in groups of 8-12 children, for 6.5 hours per day for 10 days (total 65 hours, 2 weeks). Outcomes will be assessed at baseline, immediately following intervention, and then retention of effects will be tested at 26 weeks. Primary outcomes will be the Gross Motor Function Measure and ABILHAND-Kids. Secondary outcomes will be brain structural integrity, walking endurance, bimanual hand performance, self-care, mobility, performance and satisfaction with individualised goals, and QOL. Analyses will follow standard principles for RCTs using two-group comparisons on all participants on an intention-to-treat basis. Comparisons between groups for primary and secondary outcomes will be conducted using regression models. ETHICS AND DISSEMINATION: Ethics approval has been granted by the Medical Research Ethics Committee of Children's Health Queensland Hospital and the Health Service Human Research Ethics Committee (HREC/17/QRCH/282) of The University of Queensland (2018000017/HREC/17/QRCH/2820), and The Cerebral Palsy Alliance Ethics Committee (2018_04_01/HREC/17/QRCH/282). TRIAL REGISTRATION NUMBER: ACTRN12618000164291
    corecore