1,233 research outputs found

    The Black Hole Remnant of Black Hole-Neutron Star Coalescing Binaries

    Full text link
    We present a model for determining the dimensionless spin parameter and mass of the black hole remnant of black hole-neutron star mergers with parallel orbital angular momentum and initial black hole spin. This approach is based on the Buonanno, Kidder, and Lehner method for binary black holes, and it is successfully tested against the results of numerical-relativity simulations: the dimensionless spin parameter is predicted with absolute error 0.02\lesssim 0.02, whereas the relative error on the final mass is 2\lesssim 2%, its distribution in the tests being pronouncedly peaked at 11%. Our approach and the fit to the torus remnant mass reported in Foucart (2012) thus constitute an easy-to-use analytical model that accurately describes the remnant of black hole-neutron star mergers. The space of parameters consisting of the binary mass ratio, the initial black hole spin, and the neutron star mass and equation of state is investigated. We provide indirect support to the cosmic censorship conjecture for black hole remnants of black hole-neutron star mergers. We show that the presence of a neutron star affects the quasinormal mode frequency of the black hole remnant, thus suggesting that the ringdown epoch of the gravitational wave signal may virtually be used to (1) distinguish black hole-black hole from black hole-neutron star mergers and to (2) constrain the neutron star equation of state.Comment: 16 pages, 11 figures, 5 tables; matches published versio

    Prospects for joint gravitational-wave and electromagnetic observations of neutron-star--black-hole coalescing binaries

    Get PDF
    Coalescing neutron-star-black-hole (NS-BH) binaries are a promising source of gravitational-wave (GW) signals detectable with large-scale laser interferometers such as Advanced LIGO and Virgo. They are also one of the main short gamma-ray burst (SGRB) progenitor candidates. If the BH tidally disrupts its companion, an SGRB may be ignited when a sufficiently massive accretion disk forms around the remnant BH. Detecting an NS-BH coalescence both in the GW and electromagnetic (EM) spectrum offers a wealth of information about the nature of the source. How much can actually be inferred from a joint detection is unclear, however, as a mass/spin degeneracy may reduce the GW measurement accuracy. To shed light on this problem and on the potential of joint EM+GW observations, we here combine recent semi-analytical predictions for the remnant disk mass with estimates of the parameter-space portion that is selected by a GW detection. We identify cases in which an SGRB ignition is supported, others in which it can be excluded, and finally others in which the outcome depends on the chosen model for the currently unknown NS equation of state. We pinpoint a range of systems that would allow us to place lower bounds on the equation of state stiffness if both the GW emission and its EM counterpart are observed. The methods we develop can broaden the scope of existing GW detection and parameter-estimation algorithms and could allow us to disregard about half of the templates in an NS-BH search following an SGRB trigger, increasing its speed and sensitivity.Comment: 5 pages, 3 figures; matches published versio

    Bayesian Inference Analysis of Unmodelled Gravitational-Wave Transients

    Get PDF
    We report the results of an in-depth analysis of the parameter estimation capabilities of BayesWave, an algorithm for the reconstruction of gravitational-wave signals without reference to a specific signal model. Using binary black hole signals, we compare BayesWave's performance to the theoretical best achievable performance in three key areas: sky localisation accuracy, signal/noise discrimination, and waveform reconstruction accuracy. BayesWave is most effective for signals that have very compact time-frequency representations. For binaries, where the signal time-frequency volume decreases with mass, we find that BayesWave's performance reaches or approaches theoretical optimal limits for system masses above approximately 50 M_sun. For such systems BayesWave is able to localise the source on the sky as well as templated Bayesian analyses that rely on a precise signal model, and it is better than timing-only triangulation in all cases. We also show that the discrimination of signals against glitches and noise closely follow analytical predictions, and that only a small fraction of signals are discarded as glitches at a false alarm rate of 1/100 y. Finally, the match between BayesWave- reconstructed signals and injected signals is broadly consistent with first-principles estimates of the maximum possible accuracy, peaking at about 0.95 for high mass systems and decreasing for lower-mass systems. These results demonstrate the potential of unmodelled signal reconstruction techniques for gravitational-wave astronomy.Comment: 10 pages, 7 figure

    On the universality of I-Love-Q relations in magnetized neutron stars

    Full text link
    Recently, general relations among the quadrupole moment (Q), the moment of inertia (I), and the tidal deformability (Love number) of a neutron star were shown to exist. They are nearly independent of the nuclear matter equation of state and would be of great aid in extracting parameters from observed gravitational-waves and in testing general relativity. These relations, however, do not account for strong magnetic fields. We consider this problem by studying the effect of a strong magnetic field on slowly rotating relativistic neutron stars and show that, for simple magnetic field configurations that are purely poloidal or purely toroidal, the relation between Q and I is again nearly universal. However, different magnetic field geometries lead to different I-Q relations, and, in the case of a more realistic twisted-torus magnetic field configuration, the relation depends significantly on the equation of state, losing its universality. I-Love-Q relations must thus be used with very great care, since universality is lost for stars with long spin periods, i.e. P > 10 s, and strong magnetic fields, i.e. B > 10^12 G.Comment: Published as MNRAS Letters 438, L71-L75 (2014

    Nonspinning black hole-neutron star mergers: a model for the amplitude of gravitational waveforms

    Get PDF
    Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black hole mergers, even in the relatively simple case - considered in this paper - in which both the black hole and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave emission is radically different from the black hole-black hole case and it can be broadly classified in two groups, depending on the spatial extent of the disrupted material. We present a phenomenological model for the gravitational waveform amplitude in the frequency domain that encompasses the three possible outcomes of the merger: no tidal disruption, "mild", and "strong" tidal disruption. The model is calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations of state. It should prove useful to extract information on the nuclear equation of state from future gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron star merger event rates in second- and third-generation interferometric gravitational-wave detectors. We plan to extend and improve the model as longer and more accurate gravitational waveforms become available, and we will make it publicly available online as a Mathematica package. We also present in appendix analytical fits of the projected KAGRA noise spectral density, that should be useful in data analysis applications.Comment: 22 pages; 10 figures; 4 tables; a MATHEMATICA package is available at: http://www.phy.olemiss.edu/~berti/research.htm

    On the validity of the adiabatic approximation in compact binary inspirals

    Full text link
    Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version appearing on Phys. Rev.

    The Truth of the Law. Reflections in the Margin of a Friedrich Dürrenmatt’s Short Story

    Get PDF
    The following reflections are inspired by a short story by Friedrich Dürrenmatt (1921-1990), who is unanimously considered, together with Brecht, as the greatest dramatist in Germany of the second post-war period. There is, however, an important difference that sets him apart from Brecht and this is despite the fact that Dürrenmatt did study and, in fact, ended up sharing many of Brecht's theories on epic theatre. This difference stems from the unforeseeability and unconventionality of Dürrenmatt's work that contributed, on a par with one of his countrymen, Max Frisch, to a radical renewal of dramaturgy written in Germany and which offered, in a somewhat grotesque way, a disturbing picture of the shabbiness hiding behind the appearance of respectability of the society in which he lived

    Data Analysis Methods for Testing Alternative Theories of Gravity with LISA Pathfinder

    Get PDF
    In this paper we present a data analysis approach applicable to the potential saddle-point fly-by mission extension of LISA Pathfinder (LPF). At the peak of its sensitivity, LPF will sample the gravitational field in our Solar System with a precision of several fm/s2/Hz\text{fm/s}^2/\sqrt{\text{Hz}} at frequencies around 1mHz1\,\text{mHz}. Such an accurate accelerometer will allow us to test alternative theories of gravity that predict deviations from Newtonian dynamics in the non-relativistic limit. As an example, we consider the case of the Tensor-Vector-Scalar theory of gravity and calculate, within the non-relativistic limit of this theory, the signals that anomalous tidal stresses generate in LPF. We study the parameter space of these signals and divide it into two subgroups, one related to the mission parameters and the other to the theory parameters that are determined by the gravity model. We investigate how the mission parameters affect the signal detectability concluding that these parameters can be determined with the sufficient precision from the navigation of the spacecraft and fixed during our analysis. Further, we apply Bayesian parameter estimation and determine the accuracy to which the gravity theory parameters may be inferred. We evaluate the portion of parameter space that may be eliminated in case of no signal detection and estimate the detectability of signals as a function of parameter space location. We also perform a first investigation of non-Gaussian "noise-glitches" that may occur in the data. The analysis we develop is universal and may be applied to anomalous tidal stress induced signals predicted by any theory of gravity

    Will black hole-neutron star binary inspirals tell us about the neutron star equation of state?

    Full text link
    The strong tidal forces that arise during the last stages of the life of a black hole-neutron star binary may severely distort, and possibly disrupt, the star. Both phenomena will imprint signatures about the stellar structure in the emitted gravitational radiation. The information from the disruption, however, is confined to very high frequencies, where detectors are not very sensitive. We thus assess whether the lack of tidal distortion corrections in data-analysis pipelines will affect the detection of the inspiral part of the signal and whether these may yield information on the equation of state of matter at nuclear densities. Using recent post-Newtonian expressions and realistic equations of state to model these scenarios, we find that point-particle templates are sufficient for the detection of black hole-neutron star inspiralling binaries, with a loss of signals below 1% for both second and third-generation detectors. Such detections may be able to constrain particularly stiff equations of state, but will be unable to reveal the presence of a neutron star with a soft equation of state.Comment: 4 pages, 4 figure

    Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model

    Get PDF
    The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave detection, to extract information on the equation of state from future gravitational-wave observations, to obtain more accurate estimates of black hole-neutron star merger event rates, and to determine the conditions under which these systems are plausible candidates as central engines of gamma-ray bursts, macronovae and kilonovae.Comment: 15 pages, 7 figures, 1 tabl
    corecore