677 research outputs found

    Patterns and bifurcations in low-Prandtl number Rayleigh-Benard convection

    Full text link
    We present a detailed bifurcation structure and associated flow patterns for low-Prandtl number (P=0.0002,0.002,0.005,0.02P=0.0002, 0.002, 0.005, 0.02) Rayleigh-B\'{e}nard convection near its onset. We use both direct numerical simulations and a 30-mode low-dimensional model for this study. We observe that low-Prandtl number (low-P) convection exhibits similar patterns and chaos as zero-P convection \cite{pal:2009}, namely squares, asymmetric squares, oscillating asymmetric squares, relaxation oscillations, and chaos. At the onset of convection, low-P convective flows have stationary 2D rolls and associated stationary and oscillatory asymmetric squares in contrast to zero-P convection where chaos appears at the onset itself. The range of Rayleigh number for which stationary 2D rolls exist decreases rapidly with decreasing Prandtl number. Our results are in qualitative agreement with results reported earlier

    “The history of the West is not the history of the world” – Pankaj Mishra

    Get PDF
    Pankaj Mishra explains how intellectual and political responses by Asian thinkers to western imperialism have shaped Asia as we know it today

    Sub-picosecond energy transfer from a highly intense THz pulse to water: a computational study based on the TIP4P/2005 model

    Full text link
    The dynamics of ultrafast energy transfer to water clusters and to bulk water by a highly intense, sub-cycle THz pulse of duration ≈\approx~150~fs is investigated in the context of force-field molecular dynamics simulations. We focus our attention on the mechanisms by which rotational and translational degrees of freedom of the water monomers gain energy from these sub-cycle pulses with an electric field amplitude of up to about 0.6~V/{\AA}. It has been recently shown that pulses with these characteristics can be generated in the laboratory [PRL 112, 213901 (2014)]. Through their permanent dipole moment, water molecules are acted upon by the electric field and forced off their preferred hydrogen-bond network conformation. This immediately sets them in motion with respect to one another as energy quickly transfers to their relative center of mass displacements. We find that, in the bulk, the operation of these mechanisms is strongly dependent on the initial temperature and density of the system. In low density systems, the equilibration between rotational and translational modes is slow due to the lack of collisions between monomers. As the initial density of the system approaches 1~g/cm3^3, equilibration between rotational and translational modes after the pulse becomes more efficient. In turn, low temperatures hinder the direct energy transfer from the pulse to rotational motion owing to the resulting stiffness of the hydrogen bond network. For small clusters of just a few water molecules we find that fragmentation due to the interaction with the pulse is faster than equilibration between rotations and translations, meaning that the latter remain colder than the former after the pulse

    Energy Fluxes during Dynamo Reversals

    Full text link
    Using direct numerical simulations of the equations of magnetohydrodynamics, we study reversals of the magnetic field generated by the flow of an electrically conducting fluid in a sphere. We show that at low magnetic Prandtl numbers, Pm=0.5, the decrease of magnetic energy, ohmic dissipation and power of the Lorentz force during a reversal is followed by an increase of the power injected by the force driving the flow and an increase of viscous dissipation. Cross correlations show that the Lorentz energy flux is in advance with respect to the other energy fluxes. We also observe that during a reversal, the maximum of the magnetic energy density migrates from one hemisphere to the other and comes back to its initial position, in agreement with recent experimental observations. For larger magnetic Prandtl numbers (Pm= 1, 2), the magnetic field reversals do not display these trends and strongly differ one from another.Comment: 6 pages, 5 figure
    • 

    corecore