9 research outputs found

    Transverse Sternal Split: a Safe Mini-invasive Approach for Perventricular Device Closure of Ventricular Septal Defect

    No full text
    <div><p>Abstract Objective: Perventricular device closure of ventricular septal defect through midline sternotomy avoids the cardiopulmonary bypass, however, lacks the cosmetic advantage. Perventricular device closure of ventricular septal defect with transverse split sternotomy was performed to add the cosmetic advantage of mini-invasive technique. Methods: Thirty-six pediatric patients with mean age 7.14±3.24 months and weight 5.00±0.88 kg were operated for perventricular device closure of ventricular septal defect through transverse split sternotomy in 4th intercostal space under transesophageal echocardiography guidance. In case of failure or complication, surgical closure of ventricular septal defect was performed through the same incision with cervical cannulation of common carotid artery and internal jugular vein for commencement of cardiopulmonary bypass. All the patients were postoperatively followed, and then discharged from hospital due to their surgical outcome, morbidity and mortality. Results: Procedure was successful in 35 patients. Two patients developed transient heart block. Surgical closure of ventricular septal defect was required in one patient. Mean duration of ventilation was 11.83±3.63 hours. Mean intensive care unit and hospital stay were 1.88±0.74 days and 6.58±1.38 days, respectively. There was no in-hospital mortality. A patient died one day after hospital discharge due to arrhythmia. No patients developed wound related, vascular or neurological complication. In a mean follow-up period of 23.3±18.45 months, all 35 patients were doing well without residual defect with regression of pulmonary artery hypertension as seen on transthoracic echocardiography. Conclusion: Transverse split sternotomy incision is a safe and effective alternative to a median sternotomy for perventricular device closure of ventricular septal defect with combined advantage of better cosmetic outcomes and avoidance of cardiopulmonary bypass.</p></div

    Cervical Cannulation for Surgical Repair of Congenital Cardiac Defects in Infants and Small Children

    No full text
    <div><p>Abstract INTRODUCTION: The biggest challenge faced in minimally invasive pediatric cardiac surgery is cannulation for cardiopulmonary bypass. Our technique and experience of cervical cannulation in infants and small children for repair of congenital cardiac defects is reported in this study. METHODS: From January 2013 to June 2015, 37 children (22 males) with mean age of 17.97±8.63 months and weight of 8.06±1.59 kg were operated on for congenital cardiac defects through right lateral thoracotomy. The most common diagnosis was ventricular septal defect (18 patients). In all patients, right common carotid artery, right internal jugular vein and inferior vena cava were cannulated for institution of cardiopulmonary bypass and aorta was cross clamped through right 2nd intercostal space. RESULTS: There were no deaths or any major complications related to cervical cannulation. Common carotid artery cannulation provided adequate arterial inflow while internal jugular vein with inferior vena cava provided adequate venous return in all patients. No patient required conversion to sternotomy or developed vascular, neurological or wound related complications. Three patients had residual lesions (small leak across ventricular septal defect patch-2, Grade II left atrio-ventricular valve regurgitation-1) and one patient had mild left ventricular dysfunction. At discharge, both common carotid artery and internal jugular vein were patent on color Doppler ultrasonography in all patients. In a mean follow-up period of 11.4±2.85 months, all patients were doing well. No patient had any wound related, neurological or vascular complication. No patient had residual leak across ventricular septal defect patch. CONCLUSION: Cervical cannulation of common carotid artery and internal jugular vein is a safe, reliable, efficient and quick method for institution of cardiopulmonary bypass in minimally invasive pediatric cardiac surgery.</p></div

    Experimental Spectroscopic, DFT, Molecular Docking, and Molecular Dynamics Simulation Investigations on m-Phenylenediamine (Monomer and Trimer)

    No full text
    The DFT approach has studied experimental spectroscopic molecular docking simulations of m-Phenylenediamine (m-PD) with quantum calculations. A molecular dynamics simulation is used to explore biomolecular stability. VEDA successfully carried out complete tasks for the distribution of potential energy. 1H-NMR and 13C-NMR shifts were assessed by the GIAO method, and results were compared with experimental spectra. TDDFT method and PCM solvent model were used to analyze electronic properties such as UV-Vis (in the gas phase, ethanol, and DMSO) and compared with the experimental UV-Vis spectra. The HOMO/LUMO energy results emphasize adequate charge transfer within the molecule. The electron excitation analysis was completed. Studies of donor-acceptor connections were performed using NBO analysis. The MEP surface analysis was carried out to show the charge distribution in the molecule. The degree of relative localization of electrons was analyzed using the ELF diagram. The Fukui functional analysis to find probable sites of attack by various substituents. Hirshfeld surface showed m-PD was stabilized primarily by forming H–H/H–N/C–H contacts. Biological studies like molecular docking were done with eight different receptors to find the best ligand-protein interactions. Molecular Dynamic Simulation was used to calculate the binding free energy of complex and to validate the inhibitory potency. This study helps in understanding the structural properties of compounds which in turn aids in elucidating the mechanism of a chemical reaction and helps in designing new reactions and catalysts. The main objective is to study structures and their properties by simulating chemical systems to provide accurate, reliable, and comprehensive data at an atomic level.</p

    Data_Sheet_1_Semi-automatic thresholding of RV trabeculation improves repeatability and diagnostic value in suspected pulmonary hypertension.pdf

    No full text
    ObjectivesRight ventricle (RV) mass is an imaging biomarker of mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR). Some methods of RV mass measurement on cardiac MRI (CMR) exclude RV trabeculation. This study assessed the reproducibility of measurement methods and evaluated whether the inclusion of trabeculation in RV mass affects diagnostic accuracy in suspected pulmonary hypertension (PH).Materials and methodsTwo populations were enrolled prospectively. (i) A total of 144 patients with suspected PH who underwent CMR followed by right heart catheterization (RHC). Total RV mass (including trabeculation) and compacted RV mass (excluding trabeculation) were measured on the end-diastolic CMR images using both semi-automated pixel-intensity-based thresholding and manual contouring techniques. (ii) A total of 15 healthy volunteers and 15 patients with known PH. Interobserver agreement and scan-scan reproducibility were evaluated for RV mass measurements using the semi-automated thresholding and manual contouring techniques.ResultsTotal RV mass correlated more strongly with MPAP and PVR (r = 0.59 and 0.63) than compacted RV mass (r = 0.25 and 0.38). Using a diagnostic threshold of MPAP ≥ 25 mmHg, ROC analysis showed better performance for total RV mass (AUC 0.77 and 0.81) compared to compacted RV mass (AUC 0.61 and 0.66) when both parameters were indexed for LV mass. Semi-automated thresholding was twice as fast as manual contouring (p ConclusionUsing a semi-automated thresholding technique, inclusion of trabecular mass and indexing RV mass for LV mass (ventricular mass index), improves the diagnostic accuracy of CMR measurements in suspected PH.</p

    Table1_Non-invasive detection of severe PH in lung disease using magnetic resonance imaging.docx

    No full text
    IntroductionSevere pulmonary hypertension (mean pulmonary artery pressure ≥35 mmHg) in chronic lung disease (PH-CLD) is associated with high mortality and morbidity. Data suggesting potential response to vasodilator therapy in patients with PH-CLD is emerging. The current diagnostic strategy utilises transthoracic Echocardiography (TTE), which can be technically challenging in some patients with advanced CLD. The aim of this study was to evaluate the diagnostic role of MRI models to diagnose severe PH in CLD.Methods167 patients with CLD referred for suspected PH who underwent baseline cardiac MRI, pulmonary function tests and right heart catheterisation were identified. In a derivation cohort (n = 67) a bi-logistic regression model was developed to identify severe PH and compared to a previously published multiparameter model (Whitfield model), which is based on interventricular septal angle, ventricular mass index and diastolic pulmonary artery area. The model was evaluated in a test cohort.ResultsThe CLD-PH MRI model [= (−13.104) + (13.059 * VMI)—(0.237 * PA RAC) + (0.083 * Systolic Septal Angle)], had high accuracy in the test cohort (area under the ROC curve (0.91) (p ConclusionThe CLD-PH MRI model and Whitfield model have high accuracy to detect severe PH in CLD, and have strong prognostic value.</p

    Video_2_Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning.avi

    No full text
    IntroductionComputed tomography pulmonary angiography (CTPA) is an essential test in the work-up of suspected pulmonary vascular disease including pulmonary hypertension and pulmonary embolism. Cardiac and great vessel assessments on CTPA are based on visual assessment and manual measurements which are known to have poor reproducibility. The primary aim of this study was to develop an automated whole heart segmentation (four chamber and great vessels) model for CTPA.MethodsA nine structure semantic segmentation model of the heart and great vessels was developed using 200 patients (80/20/100 training/validation/internal testing) with testing in 20 external patients. Ground truth segmentations were performed by consultant cardiothoracic radiologists. Failure analysis was conducted in 1,333 patients with mixed pulmonary vascular disease. Segmentation was achieved using deep learning via a convolutional neural network. Volumetric imaging biomarkers were correlated with invasive haemodynamics in the test cohort.ResultsDice similarity coefficients (DSC) for segmented structures were in the range 0.58–0.93 for both the internal and external test cohorts. The left and right ventricle myocardium segmentations had lower DSC of 0.83 and 0.58 respectively while all other structures had DSC >0.89 in the internal test cohort and >0.87 in the external test cohort. Interobserver comparison found that the left and right ventricle myocardium segmentations showed the most variation between observers: mean DSC (range) of 0.795 (0.785–0.801) and 0.520 (0.482–0.542) respectively. Right ventricle myocardial volume had strong correlation with mean pulmonary artery pressure (Spearman's correlation coefficient = 0.7). The volume of segmented cardiac structures by deep learning had higher or equivalent correlation with invasive haemodynamics than by manual segmentations. The model demonstrated good generalisability to different vendors and hospitals with similar performance in the external test cohort. The failure rates in mixed pulmonary vascular disease were low (ConclusionFully automated segmentation of the four cardiac chambers and great vessels has been achieved in CTPA with high accuracy and low rates of failure. DL volumetric biomarkers can potentially improve CTPA cardiac assessment and invasive haemodynamic prediction.</p
    corecore