6 research outputs found

    Enhanced oil recovery by alkaline-surfactant-alternated-gas/CO2 flooding

    No full text
    Abstract The volumetric sweep efficiencies of CO2 flooding for enhanced oil recovery (EOR) are generally low due to problems of viscous fingering and gravity override. This paper attempts to study a relatively new and promising method to reduce the mobility of CO2 flooding and increase oil recovery under reservoir conditions. Referred to as alkaline-surfactant-alternated-gas/CO2 (ASAG) flooding, this method is essentially the synergic combination of chemical and immiscible CO2 flooding. In this work, chemical formulations were identified through foam stability tests based on their foaming ability coefficients. The selected formulations were further tested for their capabilities to reduce oil–water interfacial tensions (IFT) to ultra-low value. With the best performing formulations, the laboratory-scale core flooding experiments were conducted to evaluate their EOR potential. The core flooding experiments were performed with sandstone reservoir core samples from two different depths of a major depleted oil field of Upper Assam Basin, India. This study reports the successful application of a natural anionic surfactant (black liquor) as a co-surfactant and foaming agent during ASAG flooding. It was observed that higher oil recovery of 14.26% original oil in place (OOIP) was obtained by surfactant-alternated-gas (SAG) flooding compared to 12.03% OOIP by immiscible CO2 alternated with brine (WAG) flooding. The highest residual oil recovery of 20% OOIP was obtained for ASAG flooding with the alkali, surfactant and black liquor in the chemical slug. Oil recovery performances during SAG and ASAG flooding were found to be better for core samples with lower porosity–permeability due to stronger foam formation in lower permeability cores

    Aluminum-Specific Upregulation of GmALS3 in the Shoots of Soybeans: A Potential Biomarker for Managing Soybean Production in Acidic Soil Regions

    No full text
    Aluminum (Al) toxicity in acidic soils is a global agricultural problem that limits crop productivity through the inhibition of root growth. However, poor management associated with the application of soil acidity amendments such as lime (CaCO3) in certain crop types can pose a threat to low-input farming practices. Accordingly, it is important to develop appropriate techniques for the management of crop production in acidic soils. In this study, we identified ALS3 (ALUMINUM SENSITIVE 3) in soybeans (Glycine max, cultivar Toyomasari), which is highly expressed in the shoot under Al stress. GmALS3 (Glyma.10G047100) expression was found to be Al-specific under various stress conditions. We analyzed GmALS3 expression in the shoots of soybean plants grown in two different types of acidic soils (artificial and natural acidic soil) with different levels of liming and found that GmALS3 expression was suppressed with levels of liming that have been shown to eliminate soil Al3+ toxicity. Using soybeans as a model, we identified a potential biomarker that could indicate Al toxicity and appropriate liming levels for soybeans cultivated in acidic soils

    Genetic Architecture of Parkinson's Disease in the Indian Population: Harnessing Genetic Diversity to Address Critical Gaps in Parkinson's Disease Research.

    Get PDF
    Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability and the clinical utility of genetic discoveries to other ethnically diverse populations are unknown. The Indian population has been under-represented in PD research. The Genetic Architecture of PD in India (GAP-India) project aims to develop one of the largest clinical/genomic bio-bank for PD in India. Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500 PD samples to catalog Indian genetic variability and to develop an Indian PD map for the scientific community; (3) perform a genome-wide association study to identify novel loci for PD and (4) develop a user-friendly web-portal to disseminate results for the scientific community. Our "hub-spoke" model follows an integrative approach to develop a pan-Indian outreach to develop a comprehensive cohort for PD research in India. The alignment of standard operating procedures for recruiting patients and collecting biospecimens with international standards ensures harmonization of data/bio-specimen collection at the beginning and also ensures stringent quality control parameters for sample processing. Data sharing and protection policies follow the guidelines established by local and national authorities.We are currently in the recruitment phase targeting recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020. GAP-India project after its completion will fill a critical gap that exists in PD research and will contribute a comprehensive genetic catalog of the Indian PD population to identify novel targets for PD

    Genetic architecture of Parkinson's disease in the Indian population: harnessing genetic diversity to address critical gaps in Parkinson's disease research

    Get PDF
    Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability and the clinical utility of genetic discoveries to other ethnically diverse populations are unknown. The Indian population has been under-represented in PD research. The Genetic Architecture of PD in India (GAP-India) project aims to develop one of the largest clinical/genomic bio-bank for PD in India. Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500 PD samples to catalog Indian genetic variability and to develop an Indian PD map for the scientific community; (3) perform a genome-wide association study to identify novel loci for PD and (4) develop a user-friendly web-portal to disseminate results for the scientific community. Our “hub-spoke” model follows an integrative approach to develop a pan-Indian outreach to develop a comprehensive cohort for PD research in India. The alignment of standard operating procedures for recruiting patients and collecting biospecimens with international standards ensures harmonization of data/bio-specimen collection at the beginning and also ensures stringent quality control parameters for sample processing. Data sharing and protection policies follow the guidelines established by local and national authorities.We are currently in the recruitment phase targeting recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020. GAP-India project after its completion will fill a critical gap that exists in PD research and will contribute a comprehensive genetic catalog of the Indian PD population to identify novel targets for PD
    corecore