83 research outputs found

    STABILITY IMPROVEMENT OF IMMOBILIZED ALKALINE PHOSPHATASE USING CHITOSAN NANOPARTICLES

    Get PDF
    Abstract -Enzyme engineering via immobilization techniques is a suitable approach for improving enzyme function and stability and is superior to the other chemical or biological methods. In this study chitosan nanoparticles were synthesized using the Ionic Gelation method and were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Alkaline phosphatase was successfully immobilized on the chitosan nanoparticles in optimum conditions. Chitosan nanoparticles were used because of their special properties for enzyme immobilization. This study indicated that the immobilized enzyme has improved function at high temperature and during storage. Immobilization resulted in an increased range of optimum pH and temperature, and reusability of enzyme. Furthermore, the binding efficiency calculation indicated that the immobilized alkaline phosphatase conserved 71% of its native activity. Kinetic parameter studies indicated no significant difference between the immobilized and free enzymes

    Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer

    Get PDF
    Background:Patients with pancreatic cancer have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) produces localised tissue necrosis but previous studies using the photosensitiser meso-tetrahydroxyphenylchlorin (mTHPC) caused prolonged skin photosensitivity. This study assessed a shorter acting photosensitiser, verteporfin.Methods: Fifteen inoperable patients with locally advanced cancers were sensitised with 0.4 mg kg-1 verteporfin. After 60-90 min, laser light (690 nm) was delivered via single (13 patients) or multiple (2 patients) fibres positioned percutaneously under computed tomography (CT) guidance, the light dose escalating (initially 5 J, doubling after each three patients) until 12 mm of necrosis was achieved consistently.Results:In all, 12 mm lesions were seen consistently at 40 J, but with considerable variation in necrosis volume (mean volume 3.5 cm 3 at 40 J). Minor, self-limiting extrapancreatic effects were seen in multifibre patients. No adverse interactions were seen in patients given chemotherapy or radiotherapy before or after PDT. After PDT, one patient underwent an R0 Whipple's pancreaticoduodenectomy.Conclusions:Verteporfin PDT-induced tumour necrosis in locally advanced pancreatic cancer is feasible and safe. It can be delivered with a much shorter drug light interval and with less photosensitivity than with older compounds. © 2014 Cancer Research UK

    Novel selective antagonist radioligands for the pharmacological study of A2B adenosine receptors

    Get PDF
    The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors

    Recent improvements in the development of A2B adenosine receptor agonists

    Get PDF
    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF

    A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation

    No full text
    Purpose: It has been reported that cancer stem cells (CSCs) may play a crucial role in the development, recurrence and metastasis of breast cancer. Targeting signaling pathways in CSCs is considered to be a promising strategy for the treatment of cancer. Here, we investigated the role of the A2B adenosine receptor (A2BAR) and its associated signaling pathways in governing the proliferation and viability of breast cancer cell line derived CSCs. Methods: CSCs were isolated from the breast cancer cell lines MCF-7 and MDA-MB-231 using a mammosphere assay. The effect of the A2BAR agonist BAY606583 on cell proliferation was evaluated using XTT and mammosphere formation assays, respectively. Apoptosis was assessed using Annexin-V staining and cell cycle analyses were performed using flow cytometry. The expression levels of Bax, Bcl-2, cyclin-D1, CDK-4 and (phosphorylated) ERK1/2 were assessed using Western blotting. Results: Our data revealed that the breast cancer cell line derived mammospheres were enriched for CSCs. We also found that A2BAR stimulation with its agonist BAY606583 inhibited mammosphere formation and CSC viability. In addition, we found that the application of BAY606583 led to CSC cell cycle arrest and apoptosis through the cyclin-D1/Cdk-4 and Bax/Bcl-2 pathways, respectively. Notably, we found that BAY606583 significantly down-regulated ERK1/2 phosphorylation in the breast cancer cell line derived CSCs. Conclusions: From our results we conclude that A2BAR induces breast CSC cell cycle arrest and apoptosis through downregulation of the ERK1/2 cascade. As such, A2BAR may be considered as a novel target for the treatment of breast cancer. © 2017, International Society for Cellular Oncology

    A3 adenosine receptor agonist induce G1 cell cycle arrest via Cyclin D and cyclin-dependent kinase 4 pathways in OVCAR-3 and Caov-4 cell lines

    No full text
    Aim of the Study: The cell cycle, a vital process that involves in cells' growth and division, lies at the heart of cancer. It has been shown that IB-MECA, an A3 adenosine receptor agonist inhibits the proliferation of cancer cells by inducing cell cycle arrest in several tumors. In this study, we evaluated the role of IB-MECA inhibition in cell cycle progression in ovarian cancer cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in Caov-4 and OVCAR-3. Analysis of cell cycle distribution was carried out by flow cytometry. To determine the mechanisms of IB-MECA-mediated induction of cell cycle arrest, the expression of cell cycle regulatory proteins Cyclin D1 and cyclin-dependent kinase 4 (CDK4) was evaluated. Results: Our results showed that IB-MECA significantly reduced cell viability in a dose-dependent manner. Moreover, our results indicated that a low concentration of IB-MECA induced G1 cell cycle arrest. Reduction of Cyclin D1 and CDK4 protein levels was also observed after treating cancer cells with IB-MECA. Conclusion: This study demonstrated that IB-MECA induces G1 phase cell cycle arrest through Cyclin D1/CDK4-mediated pathway in ovarian cancer cells. © 2017 Journal of Cancer Research and Therapeutics
    corecore