147 research outputs found

    A high resolution spatiotemporal model for in-vehicle black carbon exposure : quantifying the in-vehicle exposure reduction due to the Euro 5 particulate matter standard legislation

    Get PDF
    Several studies have shown that a significant amount of daily air pollution exposure is inhaled during trips. In this study, car drivers assessed their own black carbon exposure under real-life conditions (223 h of data from 2013). The spatiotemporal exposure of the car drivers is modeled using a data science approach, referred to as microscopic land-use regression (mu LUR). In-vehicle exposure is highly dynamical and is strongly related to the local traffic dynamics. An extensive set of potential covariates was used to model the in-vehicle black carbon exposure in a temporal resolution of 10 s. Traffic was retrieved directly from traffic databases and indirectly by attributing the trips through a noise map as an alternative traffic source. Modeling by generalized additive models (GAM) shows non-linear effects for meteorology and diurnal traffic patterns. A fitted diurnal pattern explains indirectly the complex diurnal variability of the exposure due to the non-linear interaction between traffic density and distance to the preceding vehicles. Comparing the strength of direct traffic attribution and indirect noise map-based traffic attribution reveals the potential of noise maps as a proxy for traffic-related air pollution exposure. An external validation, based on a dataset gathered in 2010-2011, quantifies the exposure reduction inside the vehicles at 33% (mean) and 50% (median). The EU PM Euro 5 PM emission standard (in force since 2009) explains the largest part of the discrepancy between the measurement campaign in 2013 and the validation dataset. The mu LUR methodology provides a high resolution, route-sensitive, seasonal and meteorology-sensitive personal exposure estimate for epidemiologists and policy makers

    Extending participatory sensing to personal exposure using microscopic land use regression models

    Get PDF
    Personal exposure is sensitive to the personal features and behavior of the individual, and including interpersonal variability will improve the health and quality of life evaluations. Participatory sensing assesses the spatial and temporal variability of environmental indicators and is used to quantify this interpersonal variability. Transferring the participatory sensing information to a specific study population is a basic requirement for epidemiological studies in the near future. We propose a methodology to reduce the void between participatory sensing and health research. Instantaneous microscopic land-use regression modeling (mu LUR) is an innovative approach. Data science techniques extract the activity-specific and route-sensitive spatiotemporal variability from the data. A data workflow to prepare and apply mu LUR models to any mobile population is presented. The mu LUR technique and data workflow are illustrated with models for exposure to traffic related Black Carbon. The example mu LURs are available for three micro-environments; bicycle, in-vehicle, and indoor. Instantaneous noise assessments supply instantaneous traffic information to the mu LURs. The activity specific models are combined into an instantaneous personal exposure model for Black Carbon. An independent external validation reached a correlation of 0.65. The mu LURs can be applied to simulated behavioral patterns of individuals in epidemiological cohorts for advanced health and policy research
    corecore