40 research outputs found
A possible mechanism for cold denaturation of proteins at high pressure
We study cold denaturation of proteins at high pressures. Using
multicanonical Monte Carlo simulations of a model protein in a water bath, we
investigate the effect of water density fluctuations on protein stability. We
find that above the pressure where water freezes to the dense ice phase
( kbar), the mechanism for cold denaturation with decreasing
temperature is the loss of local low-density water structure. We find our
results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added
references Changed conten
Exploring the TemperaturePressure Phase Diagram of Staphylococcal Nuclease
The temperature dependence of the pressure-induced equilibrium unfolding of staphylococcal nuclease (Snase) was determined by fluorescence of the single tryptophan residue, FTIR absorption for the amide I‘ and tyrosine O−H bands, and small-angle X-ray scattering (SAXS). The results from these three techniques were similar, although the stability as measured by fluorescence was slightly lower than that measured by FTIR and SAXS. The resulting phase diagram exhibits the well-known curvature for heat and cold denaturation of proteins, due to the large decrease in heat capacity upon folding. The volume change for unfolding became less negative with increasing temperatures, consistent with a larger thermal expansivity for the unfolded state than for the folded state. Fluorescence-detected pressure-jump kinetics measurements revealed that the curvature in the phase diagram is due primarily to the rate constant for folding, indicating a loss in heat capacity for the transition state relative to the unfolded state. The similar temperature dependence of the equilibrium and activation volume changes for folding indicates that the thermal expansivities of the folded and transition states are similar. This, along with the fact that the activation volume for folding is positive over the temperature range examined, the nonlinear dependence of the folding rate constant upon temperature implicates significant dehydration in the rate-limiting step for folding of Snase
Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature