3,811 research outputs found

    A priori error estimates for the optimal control of laser surface hardening of steel

    Get PDF
    A priori error estimates for the optimal control of laser surface hardening of stee

    Optimal L2-error estimates for the semidiscrete Galerkin\ud approximation to a second order linear parabolic initial and\ud boundary value problem with nonsmooth initial data

    Get PDF
    In this article, we have discussed a priori error estimate for the semidiscrete Galerkin approximation of a general second order parabolic initial and boundary value problem with non-smooth initial data. Our analysis is based on an elementary energy argument without resorting to parabolic duality technique. The proposed technique is also extended to a semidiscrete mixed method for parabolic problems. Optimal L2-error estimate is derived for both cases, when the initial data is in L2

    An hp-Local Discontinuous Galerkin method for Parabolic\ud Integro-Differential Equations

    Get PDF
    In this article, a priori error analysis is discussed for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that the L2 -norm of the gradient and the L2 -norm of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains

    Backward Euler method for the Equations of Motion Arising in Oldroyd Fluids of Order One with Nonsmooth Initial Data

    Full text link
    In this paper, a backward Euler method is discussed for the equations of motion arising in the 2D Oldroyd model of viscoelastic fluids of order one with the forcing term independent of time or in LL^{\infty} in time. It is shown that the estimates of the discrete solution in Dirichlet norm is bounded uniformly in time. Optimal a priori error estimate in L2-norm is derived for the discrete problem with non-smooth initial data. This estimate is shown to be uniform in time, under the assumption of uniqueness condition
    corecore