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A Priori Error Estimates for the Optimal Control of Laser Surface

Hardening of Steel

Nupur Gupta∗ Neela Nataraj† A.K.Pani‡

October 26, 2010

Abstract

In this paper, we discuss a finite element method for the laser surface hardening of steel, which
is a constrained optimal control problem governed by a system of differential equations, consisting
of an ordinary differential equation in austenite and a semi-linear parabolic differential equation in
temperature. The space discretization of the state variable is done using usual conforming finite
elements, whereas the time discretization and control discretization are based on a discontinuous
Galerkin method. A priori error estimates are developed and numerical experiments which justify
the theoretical estimates are presented.

Key words. Laser surface hardening of steel, semi-linear parabolic equation, constrained op-
timal control, regularised problem, a priori error estimates, finite element method, discontinuous
Galerkin in time, numerical experiments.

1 Introduction

In this paper, we develop a priori error estimates for the optimal control problem describing
the laser surface hardening of steel. The purpose of surface hardening is to increase the hardness of
the boundary layer of a workpiece by rapid heating and subsequent quenching (see Figure 1). The
desired hardening effect is achieved as the heat treatment leads to a change in micro-structure. A
few applications include cutting tools, wheels, driving axles, gears, etc.

The mathematical model for the laser surface hardening of steel has been studied in [2] and [3].
For an extensive survey on mathematical models for laser material treatments, we refer to [4]. In [3],
[5], the mathematical model for the laser hardening problem which gives rise to a system consisting
of a nonlinear parabolic equations and a set of ordinary differential equations with non-differentiable
right hand side is discussed. Then, the authors have first regularised the non-differentiable right
hand side functions and results on existence, regularity and stability are derived for the regularised
problem. This seems to be a common approach in all subsequent results not only on existence, but
also on numerical approximations. In [6], both laser and induction hardening have been used to
explain the model and then a finite volume method has been used for the spatial discretization and
finite difference scheme for temporal discretization of the regularised problem. In [7], the optimal
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Figure 1: Laser Hardening Process

control problem is analyzed and error estimates for a regularised problem are derived using proper
orthogonal decomposition (POD) Galerkin method. Moreover, some results on numerical simulations
are also presented. In [8], a finite element scheme combined with a nonlinear conjugate gradient
method is applied to approximate the solution of the regularised problem. Although, some of the
articles [3]-[6], [8], [9] mentioned above have discussed different numerical methods for approximating
the regularised laser surface hardening problem, a priori error estimates have not been developed. In
the present paper, a priori error estimates have been developed for both semi-discrete and complete
discrete problem of laser surface hardening of steel. The space discretization of the state variable is
achieved by using usual conforming finite elements, whereas discretizations of temporal and control
variables are based on a discontinuous Galerkin method. Initially, keeping control fixed, a priori
error bounds are developed for the state variables, for both semi-discrete and fully discrete schemes.
Finally, the convergence of the approximate control to exact control is established. A variant of
the non-linear conjugate method [8] is applied to the optimal control problem numerically. The
numerical results obtained are in good agreement with the findings of the theoretical results.

In literature, a substantial amount of work on the a priori error estimates for linear and non
linear parabolic problems are available, see for example [10], [11], [14], [15] to mention a few. For
optimal control problems governed by linear parabolic equations without control constraints, a priori
error bounds are developed in [17]. Subsequently, using space-time finite element discretization,
optimal parabolic control problems with control constraints are discussed in [18].

The outline of this paper is as follows. Section 2 describes the mathematical model of the
problem of laser surface hardening of steel and its regularization using a regularized Heaviside func-
tion. In Section 3, a weak formulation is presented and results on existence and uniqueness of the
solution of the regularized problem are discussed. Section 4 contains space-time discrete formulation
of the laser surface hardening of steel with a priori error estimates at different levels of discretization.
Section 5 describes the complete discretization with results of convergence for the control. Finally,
numerical results are presented in Section 6.

2 Laser Surface Hardening of Steel

Let Ω ⊂ R
2, denoting the workpiece, be a convex, bounded domain with piecewise Lipschitz

continuous boundary ∂Ω, Q = Ω × I and Σ = ∂Ω × I, where I = (0, T ), T <∞. Following Leblond
and Devaux [2], the evolution of volume fraction of austenite a(t) for a given temperature evolution
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θ(t) is described by the following initial value problem:

∂ta = f+(θ, a) =
1

τ(θ)
[aeq(θ) − a]+ in Q, (2.1)

a(0) = 0 in Ω, (2.2)

where aeq(θ(t)), denoted as aeq(θ) for notational convenience, is the equilibrium volume fraction of
austenite and τ is a time constant. The term

[aeq(θ) − a]+ = (aeq(θ) − a)H(aeq(θ) − a),

where H is the Heaviside function

H(s) =

{

1 s > 1
0 s ≤ 0,

denotes the non-negative part of aeq(θ) − a, that is,

[aeq(θ) − a]+ =
(aeq(θ) − a) + |aeq(θ) − a|

2
.

Neglecting the mechanical effects and using the Fourier law of heat conduction, the temper-
ature evolution can be obtained by solving the non-linear energy balance equation given by

ρcp∂tθ −K △ θ = −ρLat + αu in Q, (2.3)

θ(0) = θ0 in Ω, (2.4)

∂θ

∂n
= 0 on Σ, (2.5)

where the density ρ, the heat capacity cp, the thermal conductivity K and the latent heat L are
assumed to be positive constants. The term u(t)α(x, t) describes the volumetric heat source due to
laser radiation, u(t) being the time dependent control variable. Since the main cooling effect is the
self cooling of the workpiece, homogeneous Neumann conditions are assumed on the boundary. Also,
θ0 denotes the initial temperature.

To maintain the quality of the workpiece surface, it is important to avoid the melting of
surface. In the case of laser hardening, it is a quite delicate problem to obtain parameters that avoid
melting, but, nevertheless, lead to the right amount of hardening. Mathematically, this corresponds
to an optimal control problem in which we minimize the cost functional defined by:

J(θ, a, u) =
β1

2

∫

Ω
|a(T ) − ad|

2dx+
β2

2

∫ T

0

∫

Ω
[θ − θm]2+dxds+

β3

2

∫ T

0
|u− ud|

2ds (2.6)

subject to the state equations (2.1) − (2.5) in the set of admissible controls Uad, (2.7)

where Uad = {u ∈ U : ‖u‖L2(I) ≤ M}, with M > 0, is the closed, bounded and convex subset
of U = L2(I), denoting the maximal intensity of the laser, β1, β2 and β3 being positive constants,
ud ∈ L∞(I) being the desired laser intensity and ad being the given desired fraction of the austenite.
The second term in (2.6) is a penalizing term that penalizes the temperature below the melting
temperature θm.

For theoretical, as well as computational reasons, the term [aeq − a]+ in (2.1) is regularized
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(see Figure 2) and the regularized laser surface hardening problem is now given by:

min
uǫ∈Uad

J(θǫ, aǫ, uǫ) subject to (2.8)

∂taǫ = fǫ(θǫ, aǫ) =
1

τ(θǫ)
(aeq(θǫ) − aǫ)Hǫ(aeq(θǫ) − aǫ) in Q, (2.9)

aǫ(0) = 0 in Ω, (2.10)

ρcp∂tθǫ −K △ θǫ = −ρL∂taǫ + αuǫ in Q, (2.11)

θǫ(0) = θ0 in Ω, (2.12)

∂θǫ

∂n
= 0 on Σ, (2.13)

where

J(θǫ, aǫ, uǫ) =
β1

2

∫

Ω
|aǫ(T ) − ad|

2 dx+
β2

2

∫ T

0

∫

Ω
[θǫ − θm]2+ dx ds +

β3

2

∫ T

0
|uǫ − ud|

2 ds,

and Hǫ ∈ C1,1(R) is a monotone approximation of the Heaviside function satisfying Hǫ(s) = 0 for
s ≤ 0.
We now make the following assumptions on the coefficients [7]:

(A1) aeq(x) ∈ (0, 1) for all x ∈ R and ‖aeq‖C1(R) ≤ ca;

(A2) 0 < τ ≤ τ(x) ≤ τ̄ for all x ∈ R and ‖τ‖C1(R) ≤ cτ ;

(A3) θ0 ∈ H1(Ω), θ0 ≤ θm a.e. in Ω, where the constant θm > 0 denotes the melting temperature of
steel;

(A4) α ∈ L∞(Q);

(A5) u ∈ L2(I);

(A6) ad ∈ L∞(Ω) with 0 ≤ ad ≤ 1 a.e. in Ω.

For the sake of notational simplicity (θǫ, aǫ, uǫ) and fǫ will be replaced by (θ, a, u) and f
respectively, throughout the paper.

3 Weak Formulation

Let X = {v ∈ L2(I;V ) : vt ∈ L2(I;V ∗)} and Y = H1(I;L2(Ω)), where V = H1(Ω). Together
with H = L2(Ω), the Hilbert space V and its dual V ∗ build a Gelfand triple V →֒ H →֒ V ∗.
The duality pairing between V and V ∗ is denoted by 〈·, ·〉 = 〈·, ·〉V ∗×V . Let (·, ·)(resp. (·, ·)I,Ω)
and ‖ · ‖(resp. ‖ · ‖I,Ω) denote the inner product and norm in L2(Ω)(resp. L2(I, L2(Ω))). The inner
product and norm in L2(I) are denoted by (·, ·)L2(I) and ‖·‖L2(I), respectively. The weak formulation
corresponding to (2.9)-(2.13) takes the following form:

min
u∈Uad

J(θ, a, u) subject to (3.1)

(∂ta,w) = (f(θ, a), w) ∀w ∈ H, a.e. in I, (3.2)

a(0) = 0, (3.3)

ρcp(∂tθ, v) +K(▽θ,▽v) = −ρL(∂ta, v) + (αu, v) ∀v ∈ V, a.e. in I, (3.4)

θ(0) = θ0. (3.5)
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Figure 2: Heaviside (H(s)) and Regularized Heaviside (Hǫ(s)) functions

The following theorem [[8], Theorem 2.1] ensures the existence of a unique solution of the system
(3.2)-(3.5).

Theorem 3.1. Suppose that (A1)-(A6) are satisfied. Then, the system (3.2)-(3.5) has a unique
solution

(θ, a) ∈ H1,1(Q) ×W 1,∞(I;L∞(Ω)),

where H1,1 = L2(I;H1(Ω)) ∩H1(I;L2(Ω)). Moreover, a satisfies

0 ≤ a < 1 a.e. in Q.

Remark 3.1. [8] Due to (A1)-(A2) and the definition of the regularized Heaviside function Hǫ, there
exists a constant cf > 0 independent of θ and a such that

max(‖f(θ, a)‖L∞(Q), ‖fa(θ, a)‖L∞(Q), ‖fθ(θ, a)‖L∞(Q)) ≤ cf

for all (θ, a) ∈ L2(Q) × L∞(Q).

The existence of the optimal control is guaranteed by the following theorem [[8], Theorem
2.3].

Theorem 3.2. Suppose that (A1)-(A6) hold true. Then the optimal control problem (3.1)-(3.5) has
at least one (global) solution.

Let u∗ ∈ Uad be a solution of (3.1)-(3.5) and (θ∗, a∗) be the solution of the corresponding state
system. In the following lemma, we state the existence and uniqueness result of the corresponding
adjoint system.
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Lemma 3.1. [7] Let (A1)-(A6) hold true and (θ∗, a∗, u∗) ∈ X×Y ×Uad be a solution to (3.1)-(3.5).
Then there exists a unique solution (z∗, λ∗) ∈ H1,1×H1(I, L2(Ω)) of the corresponding adjoint system
defined by:

−(ψ, ∂tλ
∗) + (ψ, fa(θ

∗, a∗)(ρLz∗ − λ∗)) = 0 ∀ψ ∈ H, a.e. in I, (3.6)

λ∗(T ) = β1(a
∗(T ) − ad), (3.7)

−ρcp(φ, ∂tz
∗) +K(▽φ,▽z∗) + (φ, fθ(θ

∗, a∗)(ρLz∗ − λ∗)) = β2(φ, [θ
∗ − θm]+) (3.8)

∀φ ∈ V, a.e. in I,

z∗(T ) = 0. (3.9)

Moreover, z∗ satisfies the following variational inequality

(

β3(u
∗ − ud) +

∫

Ω
αz∗dx, p− u∗

)

L2(I)

≥ 0 ∀p ∈ Uad. (3.10)

The existence of a unique solution to the state equation (3.2)-(3.5) ensures the existence of a
control-to-state mapping u 7−→ (θ, a) = (θ(u), a(u)) through (3.2)-(3.5). By means of this mapping,
we introduce the reduced cost functional j : Uad −→ R as

j(u) = J(θ(u), a(u), u). (3.11)

Then the optimal control problem can be equivalently reformulated as

min
u∈Uad

j(u). (3.12)

The first order necessary optimality condition for (3.12) reads as

j′(u∗)(p − u∗) ≥ 0 ∀p ∈ Uad, (3.13)

where j′(u)(p − u) =

(

β3(u− ud) +

∫

Ω
αz(u)dx, p− u

)

L2(I)

.

Remark 3.2. The constant C will be used to denote different values at different steps of the proof
throughout the paper in all results and is a generic one.

We now discuss a regularity result for θ.

Lemma 3.2. Under the assumptions (A1)-(A5), the solution (θ, a) of (3.2)-(3.5) satisfies:

‖∆θ‖I;Ω ≤ C,

where C > 0 is a constant.

Proof. From (3.4), we have

ρcp(∂tθ, v) −K(∆θ, v) = −ρL(∂ta, v) + (αu, v).

Putting v = −∆θ and using Cauchy Schwarz inequality, we obtain

K‖∆θ‖ ≤ C

(

‖∂ta‖ + |u| + ‖∂tθ‖

)

,
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where C = max{ρcp, ρL, maxQ |α(x, t)|}.
Squaring and integrating from 0 to T , we find that

‖∆θ‖2
I,Ω ≤ C(‖∂ta‖

2
I;Ω + ‖u‖2

L2(I) + ‖∂tθ‖
2
I;Ω).

Using (θ, a) ∈ H1,1 × W 1,∞(I, L∞(Ω)) ([7], Theorem 2.1) we obtain the required result and this
completes the rest of the proof.

4 Semidiscrete Scheme

In this section, we discuss a semi-discrete Galerkin method with piece-wise linear polynomials
for the problem (3.1)-(3.5) and establish a priori error estimates for the semi-discrete solution with
a fixed control variable u ∈ Uad. Moreover, similar analysis is also developed for the semi-discrete
approximation of the adjoint problem (3.6)-(3.9).

Let Th be an admissible regular triangulation of Ω̄ into simplexes R. Let the discretization
parameter h be defined as h = max

R∈Th

hR, where hR is the diameter of R. Further, let Vh ⊂ V be a

finite element space defined by Vh = {v ∈ C0(Ω̄) : v|R ∈ P1(R) ∀R ∈ Th} and Xh = L2(I, Vh).
Here P1(R) denotes the set of all polynomials of degree ≤ 1. Then the semi-discrete formulation
corresponding to the continuous problem (3.1)-(3.5) reads as

min
u∈Uad

J(θh, ah, u) subject to (4.1)

(∂tah, w) = (f(θh, ah), w) ∀w ∈ Vh, a.e. in I, (4.2)

ah(0) = 0, (4.3)

ρcp(∂tθh, v) +K(▽θh,▽v) = −ρL(∂tah, v) + (αu, v) ∀v ∈ Vh, a.e. in I, (4.4)

θh(0) = θh,0, (4.5)

where θh,0 is a suitable approximation of θ0 to be chosen later. Corresponding to the solution
ũ∗ ∈ Uad of (4.1)-(4.5), let (θ∗h, a

∗
h) be the solution to the state system (4.2)-(4.4). The first order

optimality conditions yield the adjoint problem: Find (z∗h(t), λ∗h(t)) ∈ Vh × Vh, t ∈ Ī such that

−(ψ, ∂tλ
∗
h) + (ψ, fa(θ

∗
h, a

∗
h)(ρLz∗h − λ∗h)) = 0 ∀ψ ∈ Vh, a.e. in I, (4.6)

λ∗h(T ) = β1(a
∗
h(T ) − ad), (4.7)

−ρcp(φ, ∂tz
∗
h) +K(▽φ,▽z∗h) + (φ, fθ(θ

∗
h, a

∗
h)(ρLz∗h − λ∗h)) = β2(φ, [θ

∗
h − θm]+) (4.8)

∀φ ∈ Vh, a.e. in I,

z∗h(T ) = 0. (4.9)

Moreover, z∗h satisfies the following variational inequality

(

β3(ũ
∗ − ud) +

∫

Ω
αz∗hdx, p− ũ∗

)

L2(I)

≥ 0 ∀p ∈ Uad. (4.10)

Now we consider the reduced cost functional jh : Uad −→ R:

jh(u) = J(θh(u), ah(u), u). (4.11)
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Then the semi-discrete optimal control problem can be equivalently formulated as

min
u∈Uad

jh(u). (4.12)

The first order necessary optimality condition for (4.12) reads as

j′h(ũ∗)(p− ũ∗) ≥ 0 ∀p ∈ Uad, (4.13)

where j′h(u)(p − u) =

(

β3(u− ud) +

∫

Ω
αzh(u)dx, p − u

)

L2(I)

.

Now define the elliptic projection Rh : V −→ Vh by

K(▽(v −Rhv),▽φ) + γ(v −Rhv, φ) = 0 ∀φ ∈ Vh, (4.14)

where γ is a positive constant.

Lemma 4.1 ([20], p. 737). For v ∈ H2(Ω), there exists a positive constant C such that:

‖v −Rhv‖ ≤ Ch2‖v‖H2(Ω).

We also define the L2-projection Ph : L2(Ω) ×H2(Ω) −→ Vh, such that

(Phv − v,w) = 0 ∀w ∈ Vh.

Note that Ph satisfies the following error estimates:

‖v − Phv‖ ≤ Ch2‖v‖H2(Ω) ∀v ∈ H2(Ω). (4.15)

Theorem 4.1. Let (θ, a) and (θh, ah) be the solutions of (3.2)-(3.5) and (4.2)-(4.5), respectively.
Then, under the extra regularity assumptions that, (θ, a) ∈ L∞(I,H2(Ω)) × L∞(I,H2(Ω)), ∂tθ ∈
L2(I,H2(Ω)) and θ0 ∈ H2(Ω); for fixed u ∈ Uad, there exists a positive constant C independent of h
such that

‖θ(t) − θh(t)‖ + ‖a(t) − ah(t)‖ ≤ Ch2

(

‖θ0‖H2(Ω) + ‖θ‖L∞(I,H2(Ω)) + ‖a‖L∞(I,H2(Ω))

+‖∂tθ‖L2(I,H2(Ω))

)

∀t ∈ I.

Proof. Let ζθ = θ −Rhθ and ηθ = Rhθ − θh. Subtract (4.4) from (3.4), use (3.2), (4.2) and (4.14)
to obtain

ρcp(∂tη
θ, v) +K(▽ηθ,▽v) = −ρL(f(θ, a) − f(θh, ah), v) − ρcp(∂tζ

θ, v) + γ(ζθ, v),

where v ∈ Vh.Choose v = ηθ. Then integrate from 0 to t, apply Cauchy Schwarz and Young’s
inequality to obtain

‖ηθ(t)‖2 ≤ C

(

‖ηθ(0)‖2 +

∫ t

0

(

‖f(θ, a) − f(θh, ah)‖2 + ‖ηθ‖2 + ‖ζθ‖2 + ‖∂tζ
θ‖2

)

ds

)

.(4.16)
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By choosing θh,0 as the L2 approximation of the function θ0 ∈ H2(Ω), we obtain

‖ηθ(0)‖2 ≤ ‖Rhθ0 − θ0‖
2 + ‖θ0 − θh,0‖

2 ≤ Ch4‖θ0‖
2
H2(Ω). (4.17)

Since f is Lipschitz in both the arguments (see Remark 3.1), we find using (4.17) in (4.16)
that

‖ηθ(t)‖2 ≤ C

(

h4‖θ0‖
2
H2(Ω) +

∫ t

0

(

‖θ − θh‖
2 + ‖a− ah‖

2 + ‖ηθ‖2 + ‖ζθ‖2 + ‖∂tζ
θ‖2

)

ds

)

≤ C

(

h4‖θ0‖
2
H2(Ω) +

∫ t

0
(‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2)ds +

∫ t

0
(‖ηθ‖2 + ‖ηa‖2)ds

)

, (4.18)

where ζa = a − Pha, η
a = Pha − ah. Now subtracting (4.2) from (3.2) for fixed t ∈ I, integrating

from 0 to t, using Cauchy Schwarz, Young’s inequality and the fact that (∂tζ
a, η) = 0, we obtain

‖ηa(t)‖2 ≤ C

(
∫ t

0
(‖ζθ‖2 + ‖ζa‖2)ds+

∫ t

0
(‖ηθ‖2 + ‖ηa‖2)ds

)

. (4.19)

Adding (4.18) and (4.19), we arrive at

‖ηθ(t)‖2 + ‖ηa(t)‖2 ≤ C

(

h4‖θ0‖
2
H2(Ω) +

∫ T

0
(‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2) ds

)

+ C

∫ t

0
(‖ηθ‖2 + ‖ηa‖2) ds.

Using Gronwall’s lemma, Lemma 4.1 and (4.15), we obtain

‖ηθ(t)‖2 + ‖ηa(t)‖2 ≤ Ch4

(

‖θ0‖
2
H2(Ω) + ‖θ‖2

L2(I,H2(Ω)) + ‖a‖2
L2(I,H2(Ω)) + ‖∂tθ‖

2
L2(I,H2(Ω))

)

.

A use of triangle inequality with Lemma 4.1 and (4.15) yields the required result and this
completes the rest of the proof.

Remark 4.1. Although, the finite element space used in this article to discretize the variables θ
and a is Xh, where approximation is done using continuous functions, the variable a can also be
approximated using piecewise constants with appropriate changes in the proof.

Below, we discuss error estimates for the adjoint problem.

Theorem 4.2. Let (z∗, λ∗) and (z∗h, λ
∗
h) be the solutions of (3.6)-(3.9) and (4.6)-(4.9) corresponding

to the state solutions (θ∗, a∗) and (θ∗h, a
∗
h), respectively. Then, under the extra regularity assumptions

made in Theorem 4.1 and (z∗, λ∗) ∈ L∞(I,H2(Ω)) × L∞(I,H2(Ω)), ∂tz
∗ ∈ L2(I,H2(Ω)), ad ∈

H2(Ω); for t ∈ I, there exists a positive constant C independent of h such that

‖z∗(t) − z∗h(t)‖ + ‖λ∗(t) − λ∗h(t)‖

≤ Ch2

(

‖θ0‖H2(Ω) + ‖θ∗‖L∞(I,H2(Ω)) + ‖a∗‖L∞(I,H2(Ω)) + ‖∂tθ
∗‖L2(I,H2(Ω))

+‖ad‖H2(Ω) + ‖z∗‖L∞(I,H2(Ω)) + ‖λ∗‖L∞(I,H2(Ω)) + ‖∂tz
∗‖L2(I,H2(Ω))

)

.
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Proof. Write λ∗−λ∗h = (λ∗−Phλ
∗)+(Phλ

∗−λ∗h) = ζλ+ηλ and z∗−z∗h = (z∗−Rhz
∗)+(Rhz

∗−z∗h) =
ζz + ηz. Subtract (4.8) from (3.8) and use (4.14) to obtain

−ρcp(φ, ∂tη
z) + K(▽φ,▽ηz) = ρcp(φ, ∂tζ

z) + γ(φ, ζz) (4.20)

− (φ, fθ(θ
∗, a∗)(ρLz∗ − λ∗) − fθ(θ

∗
h, a

∗
h)(ρLz∗h − λ∗h)) + (φ, [θ∗ − θm]+ − [θ∗h − θm]+)

Choose φ = ηz in (4.20), integrate from t to T , apply Cauchy Schwarz inequality, Young’s inequality
and use Theorem 4.1, to obtain

‖ηz(t)‖2 ≤ C

(

h4(‖θ0‖
2
H2(Ω) + ‖θ∗‖2

L∞(I,H2(Ω)) + ‖a∗‖2
L∞(I,H2(Ω)) + ‖∂tθ

∗‖2
L2(I,H2(Ω)))

+

∫ T

t
(‖ηz‖2 + ‖ηλ‖2 + ‖ζz‖2 + ‖ζλ‖2 + ‖∂tζ

z‖2)ds

)

. (4.21)

Subtract (4.6) from (3.6) and choose χ = ηλ. Then integrate from t to T and apply Cauchy Schwarz
with Young’s inequality, to arrive at

‖ηλ(t)‖2 ≤ C

(

‖Phad − ad‖
2 + ‖Pha

∗(T ) − a∗h(T )‖2 +

∫ T

t
(‖ηz‖2 + ‖ηλ‖2 + ‖ζλ‖2 + ‖ζλ‖2)ds

)

.

Using Lemma 4.1 and Theorem 4.1, we obtain

‖ηλ(t)‖2 ≤ C

(

h4(‖θ0‖
2
H2(Ω) + ‖θ∗‖2

L∞(I,H2(Ω)) + ‖a∗‖2
L∞(I,H2(Ω)) + ‖∂tθ

∗‖2
L2(I,H2(Ω)) + ‖ad‖

2
H2(Ω))

+

∫ T

t
(‖ηz‖2 + ‖ηλ‖2 + ‖ζz‖2 + ‖ζλ‖2 + ‖∂tζ

z‖2)ds

)

. (4.22)

Adding (4.21) and (4.22), we find that

‖ηz(t)‖2 + ‖ηλ(t)‖2 ≤ Ch4

(

‖θ0‖
2
H2(Ω) + ‖θ∗‖2

L∞(I,H2(Ω)) + ‖a∗‖2
L∞(I,H2(Ω)) + ‖∂tθ

∗‖2
L2(I,H2(Ω))

+‖ad‖
2
H2(Ω)

)

+ C

∫ T

0
(‖ζz‖2 + ‖ζλ‖2 + ‖∂tζ

z‖2) ds + C

∫ T

t
(‖ηz‖2 + ‖ηλ‖2) ds.

Using Gronwall’s lemma, we obtain

‖ηz(t)‖2 + ‖ηλ(t)‖2 ≤ Ch4

(

‖θ0‖
2
H2(Ω) + ‖θ∗‖2

L∞(I,H2(Ω)) + ‖a∗‖2
L∞(I,H2(Ω)) + ‖∂tθ

∗‖2
L2(I,H2(Ω))

+‖ad‖
2
H2(Ω)

)

+ C

∫ T

0
(‖ζz‖2 + ‖ζλ‖2 + ‖∂tζ

z‖2) ds. (4.23)

A use of Lemma 4.1, (4.15) and (4.23) yields the required result and this completes the rest of the
proof.

5 Completely Discrete Scheme

In this section, a temporal discretization is done using a discontinuous Galerkin finite element
method with piecewise constant approximation and a priori error estimates are proved in Theorem
5.1 and 5.2. The control is being discretized using piecewise constants in each time interval In, n =



Laser Surface Hardening of Steel 11

1, 2, · · ·, N . In Theorem 5.3, the convergence of discrete optimal control to an optimal control of
(3.1)-(3.5) is established. In order to discretize (4.1)-(4.5) in time, we consider the following partition
of I:

0 = t0 < t1 < .... < tN = T.

Set I1 = [t0, t1] and In = (tn−1, tn], kn = tn − tn−1, for n = 2, 3, ..., N and k = max
1≤n≤N

kn. We define

Xq
hk = {φ : I → Vh; φ|In =

q−1
∑

j=0

ψjt
j , ψj ∈ Vh}, q ∈ N. (5.1)

For a function v in Xq
hk, we use the following notations:

vn = v(tn), v+
n = lim

t→tn+0
v(t) and [v]n = v+

n − v−n .

Then the dG(q)cG(1) discretization of (3.1)-(3.5) reads as:

min
u∈Uad

J(θhk, ahk, u) subject to (5.2)

N
∑

n=1

(∂tahk, w)In,Ω +

N−1
∑

n=1

([ahk]n, w
+
n ) + (a+

hk,0, w
+
0 ) = (f(θhk, ahk), w)I,Ω, (5.3)

ahk(0) = 0, (5.4)

ρcp

N
∑

n=1

(∂tθhk, v)In,Ω + K(▽θhk,▽v)I,Ω + ρcp

N−1
∑

n=1

([θhk]m, v
+
m) + ρcp(θ

+
hk,0, v

+
0 )

= −ρL(f(θhk, ahk, v))I,Ω + (αu, v)I,Ω + ρcp(θ0, v
+
0 ), (5.5)

θhk(0) = θh,0 (5.6)

for all (v,w) ∈ Xq
hk ×Xq

hk.
Corresponding to the solution û∗ ∈ Uad of (5.2)-(5.6), let (θ∗hk, a

∗
hk) be the solution to the state

system (5.3)-(5.6). The first order optimality conditions yield the adjoint problem:
Find (z∗hk, λ

∗
hk) ∈ Xq

hk ×Xq
hk such that

−

N
∑

n=1

(ψ, ∂tλ
∗
hk)In,Ω −

N−1
∑

n=1

(ψ−
n , [λ

∗
hk]n) − (ψ−

N , λ
−,∗
hk,N)

+(ψ, fa(θ
∗
hk, a

∗
hk)(ρLz

∗
hk − λ∗hk))I,Ω = −(ψ−

n , λ
∗
hk(T )), (5.7)

λ∗hk(T ) = β1(a
∗
hk(T ) − ad), (5.8)

−ρcp

N
∑

n=1

(φ, ∂tz
∗
hk)In,Ω +K(▽φ,▽z∗hk)I,Ω − ρcp

N−1
∑

n=1

(φ−m, [z
∗
hk]m) − ρcp(φ

−
N , z

+,∗
hk,N)

+(φ, fθ(θ
∗
hk, a

∗
hk)(ρLz

∗
hk − λ∗hk))I,Ω = β2(φ, [θ

∗
hk − θm]+)I,Ω, (5.9)

z∗hk(T ) = 0, (5.10)

for all (ψ, φ) ∈ Xq
hk ×Xq

hk. Moreover, z∗hk satisfies the following variational inequality

(

β3(û
∗ − ud) +

∫

Ω
αzhkdx, p− û∗

)

L2(I)

≥ 0 ∀p ∈ Uad. (5.11)
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We introduce the following space-time discrete reduced cost functional jhk : Uad −→ R:

jhk(u) = J(θhk(u), ahk(u), u). (5.12)

Then the space-time discrete optimal control problem can be equivalently reformulated as

min
u∈Uad

jhk(u). (5.13)

The first order necessary optimality condition for (5.13) reads as

j′hk(û
∗)(p − û∗) ≥ 0 ∀p ∈ Uad. (5.14)

We consider the case of piecewise constant approximation in time for both the state and adjoint
formulation. For the case where q = 1 in the definition of Xq

hk, (5.3)-(5.6) can be rewritten as: for
n = 1, 2, · · ·, N , find (θn

hk, a
n
hk) ∈ Vh × Vh such that

(

an
hk − an−1

hk

kn
, w

)

=
1

kn

(
∫

In

f(θn
hk, a

n
hk)ds,w

)

, (5.15)

ahk(0) = 0, (5.16)

ρcp

(

θn
hk − θn−1

hk

kn
, v

)

+K(▽θn
hk,▽v) = −ρL

(

1

kn

∫

In

f(θn
hk, a

n
hk)ds, v

)

+

(

1

kn

∫

In

αuds, v

)

, (5.17)

θhk(0) = θh,0, (5.18)

∀(w, v) ∈ Vh × Vh.

Before estimating the a priori error estimates for space-time discretization, we define the interpolant
πk : C(Ī , Vh) −→ X1

hk as:
πkv(tn) = v(tn) ∀n = 1, 2, · · ·, N, (5.19)

where C(Ī , Vh) is the space of all continuous functions defined from Ī to Vh. Note that

‖v − πkv‖I,Ω ≤ Ck‖∂tv‖. (5.20)

Theorem 5.1. Let (θm
hk, a

m
hk) ∀m = 1, 2, · · ·, N and (θ, a) be the solutions of the problems (5.15)-

(5.18) and (3.2)-(3.5), respectively. Then, under the extra regularity assumptions made in Theorem
4.1 and (∂ttθ, ∂tta) ∈ L∞(I, L2(Ω)) × L∞(I, L2(Ω)), ∂tu ∈ L2(I); there exists a positive constant C
independent of h and k such that

‖θ(tm) − θm
hk‖ + ‖a(tm) − am

hk‖

≤ Ch2

(

‖θ‖L∞(I,H2(Ω)) + ‖a‖L∞(I,H2(Ω)) + ‖∂tθ‖L2(I,H2(Ω)) + ‖θ0‖H2(Ω)

)

+Ck

(

‖∂tu‖L2(I) + ‖∂ttθ‖L∞(I,L2(Ω)) + ‖∂tta‖L∞(I,L2(Ω))

)

, tm ∈ Īm.

Proof. Write θ(tn)− θn
hk = (θ(tn)−Rhθ(tn))+ (Rhθ(tn)− θn

hk) = ζθ,n +ηθ,n and denote
θn
hk

−θn−1

hk

kn
by

∂̄θn
hk. Also, write a(tn)−an

hk = (a(tn)−Pha(tn))+(Pha(tn)−an
hk) = ζa,n +ηa,n and denote

an
hk

−an−1

hk

kn
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by ∂̄an
hk. Subtracting (5.17) from (3.4), we obtain at t = tn

ρcp(∂tθ(tn) − ∂̄θn
hk, v) +K(▽(θ(tn) − θn

hk),▽v) = −ρL

(

f(θ(tn), a(tn)) −
1

kn

∫

In

f(θn
hk, a

n
hk)ds, v

)

+

(

α(x, tn)u(tn) −
1

kn

∫

In

αuds, v

)

,

where v ∈ Vh. Using (5.19) and (4.14), we find that

ρcp(∂̄η
θ,n, v) + K(▽(ηθ,n,▽v) = −ρcp(∂̄ζ

θ,n, v) + ρcp(∂̄θ(tn) − ∂tθ(tn), v) (5.21)

+ γ(ζθ,n, v) − ρL

(

f(θ(tn), a(tn)) − f(θn
hk, a

n
hk), v

)

+

(

1

kn

∫

In

(πk(α(x, tn)u(tn)) − αu) ds, v

)

.

Choose v = ηθ,n in (5.21) and Cauchy-Schwarz inequality to obtain

ρcp(∂̄η
θ,n, ηθ,n) + K‖ ▽ ηθ,n‖2 ≤ ρ

(

L‖f(θn
hk, a

n
hk) − f(θ(tn), a(tn))‖ + cp‖∂̄θ(tn) − ∂tθ(tn)‖

)

‖ηθ,n‖

+

(

ρcp‖∂̄ζ
θ,n‖ + γ‖ζθ,n‖ +

1

k
1/2
n

‖πk(αu) − αu‖In,Ω

)

‖ηθ,n‖. (5.22)

Observe that

(∂̄ηθ,n, ηθ,n) =
1

2kn

(

‖ηθ,n‖2 − ‖ηθ,n−1‖2

)

+
1

2kn
‖ηθ,n − ηθ,n−1‖2 (5.23)

≥
1

2kn

(

‖ηθ,n‖2 − ‖ηθ,n−1‖2

)

.

Using (5.23) in (5.22), we find that

‖ηθ,n‖2 − ‖ηθ,n−1‖2 ≤ Ckn

(

‖f(θn
hk, a

n
hk) − f(θ(tn), a(tn))‖ + ‖∂̄θ(tn) − ∂tθ(tn)‖

+‖∂̄ζθ,n‖ + ‖ζθ,n‖

)

‖ηθ,n‖ + Ck1/2
n ‖πk(αu) − αu‖In,Ω ‖ηθ,n‖.

Using Young’s inequality and the Remark 3.1, we obtain

‖ηθ,n‖2 − ‖ηθ,n−1‖2 ≤ Ckn

(

‖ηθ,n‖2 + ‖ηa,n‖2 + ‖ζθ,n‖2 + ‖ζa,n‖2

+ ‖∂̄θ(tn) − ∂tθ(tn)‖2 + ‖∂̄ζθ,n‖2 + k−1
n ‖u− πku‖

2
In,Ω

)

= Ckn

(

‖ηθ,n‖2 + ‖ηa,n‖2 + ‖ζa,n‖2 +R1
n

)

, (5.24)

where R1
n = ‖ζθ,n‖2 + ‖∂̄θ(tn) − ∂tθ(tn)‖2 + ‖∂̄ζθ,n‖2 + k−1

n ‖αu − πk(αu)‖
2
In,Ω. Summing up (5.24)
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from n = 1 to m, we find that

‖ηθ,m‖2 ≤ ‖ηθ,0‖2 +

m
∑

n=1

Ckn

(

‖ηθ,n‖2 + ‖ηa,n‖2 + ‖ζa,n‖2 +R1
n

)

. (5.25)

Similarly, we now consider

(∂̄ηa,n, w) = (f(θ(tn), a(tn)) − f(θn
hk, a

n
hk), w) − (∂̄a(tn) − ∂ta(tn), w) − (∂̄ζa,n, w),

where w ∈ Vh. Putting w = ηa,n and proceeding as in (5.22)-(5.23) we find using Remark 3.1 that

‖ηa,n‖2 − ‖ηa,n−1‖2 ≤ Ckn

(

‖ηθ,n‖2 + ‖ηa,n‖2 + ‖ζθ,n‖2 +R2
n

)

, (5.26)

where R2
n = ‖ζa,n‖2 + ‖∂̄a(tn) − ∂ta(tn)‖2. Summing up (5.26) from n = 1 to m, we arrive at

‖ηa,m‖2 ≤ ‖ηa,0‖2 +

m
∑

n=1

Ckn

(

‖ηθ,n‖2 + ‖ηa,n‖2 + ‖ζθ,n‖2 +R2
n

)

. (5.27)

Now adding (5.25) and (5.27) we obtain

(

‖ηθ,m‖2 + ‖ηa,m‖2

)

≤ ‖ηθ,0‖2 + ‖ηa,0‖2 +
m

∑

n=1

Ckn(‖ηθ,n‖2 + ‖ηa,n‖2)

+ C

m
∑

n=1

kn(R1
n +R2

n). (5.28)

In order to estimate the terms in R1
n, we use Lemma 4.1 to obtain

‖∂̄ζθ,n‖2 = ‖k−1
n

∫ tn

tn−1

∂tζ
θds‖2

≤ k−1
n

∫ tn

tn−1

‖∂tζ
θ‖2 ds ≤ Ck−1

n h4

∫ tn

tn−1

‖∂tθ(s)‖
2
H2(Ω) ds, (5.29)

Using interpolation error, we find that

‖αu− πk(αu)‖
2
L2(In) ≤ Ck2

n

∫ tn

tn−1

(|∂tu|
2 + ‖αt‖

2
L∞(Ω)) ds. (5.30)

A use of Taylor’s expansion yields

‖∂̄θ(tn) − ∂tθ(tn)‖2 = ‖k−1
n

∫ tn

tn−1

(s− tn−1)∂ttθ ds‖
2 ≤ k−2

n

(
∫ tn

tn−1

(s− tn−1)‖∂ttθ‖ ds

)2

≤
1

3
kn

∫ tn

tn−1

‖∂ttθ‖
2 ds. (5.31)
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A use of Lemma 4.1 with (5.20),(5.29)-(5.31) implies that

m
∑

n=1

knR
1
n ≤ Ch4

(

‖θ‖2
L∞(I,H2(Ω)) + ‖∂tθ‖

2
L2(I;H2(Ω))

)

(5.32)

+ C

m
∑

n=1

k2
n

(

|∂tu|
2
L2(In) + ‖αt‖

2
L2(In;L∞(Ω) + ‖∂ttθ‖

2
L2(In,L2(Ω))

)

.

Similarly, we estimate R2
n and write is as

m
∑

n=1

knR
2
n ≤ C

(

h4‖a‖2
L∞(I,H2(Ω)) +

m
∑

n=1

k2
n‖∂tta‖

2
L2(In,L2(Ω))

)

. (5.33)

Note that ‖ηθ,0‖ ≤ Ch2‖θ0‖H2(Ω). On substituting (5.32)-(5.33) in (5.28), we obtain

‖ηθ,m‖2 + ‖ηa,m‖2 ≤ Ch4

(

‖θ‖2
L∞(I,H2(Ω)) + ‖a‖2

L∞(I,H2(Ω)) + ‖∂tθ‖
2
L2(I;H2(Ω))

)

(5.34)

+ C

m
∑

n=1

k2
n

(

|∂tu|
2
L2(In) + ‖αt‖

2
L2(In;L∞(Ω) + ‖∂ttθ‖

2
L2(In,L2(Ω)) + ‖∂tta‖

2
L2(In,L2(Ω))

)

.

+

m−1
∑

n=1

kn(‖ηθ,n‖2 + ‖ηa,n‖2)

Using discrete Gronwall’s lemma and k = max1≤n≤N kn, we arrive at the required result and this
completes the rest of the proof.

Similar to the error estimates for (θ, a), the following theorem yields error estimates for the
adjoint variables (z, λ). The proof of the following theorem is on the same lines as Theorem 5.1 and
hence is omitted.

Theorem 5.2. Let (zn,∗
hk , λ

n,∗
hk ) ∀n = 1, 2, · · ·, N and (z∗, λ∗) be the solutions of the adjoint problems

(5.7)-(5.10) and (3.6)-(3.9) corresponding to the solutions (θn,∗
hk , a

n,∗
hk ) ∀n = 1, 2, · · ·, N and (θ∗, a∗)

of (5.15)-(5.17) and (3.2)-(3.4), respectively, with optimal control u∗ ∈ Uad. Then, under the extra
regularity assumptions in Theorem 5.1 with (z∗, λ∗) ∈ L∞(I,H2(Ω)) × L∞(I,H2(Ω)), (∂ttz, ∂tta) ∈
L∞(I, L2(Ω)) × L∞(I, L2(Ω)), ∂tz ∈ L2(I,H2(Ω)), ad ∈ H2(Ω); there exists a positive constant C
independent of h and k, such that

‖zn,∗
hk − z∗(tn)‖ + ‖λn,∗

hk − λ∗(tn)‖ ≤ Ch2

(

‖θ∗‖L∞(I,H2(Ω)) + ‖a∗‖L∞(I,H2(Ω)) + ‖∂tθ
∗‖L2(I,H2(Ω))

+‖z∗‖L∞(I,H2(Ω)) + ‖λ∗‖L∞(I,H2(Ω)) + ‖∂tz
∗‖L2(I,H2(Ω)) + ‖θ0‖H2(Ω) + ‖ad‖H2(Ω)

)

+Ck

(

‖∂tu
∗‖L2(I) + ‖∂ttθ

∗‖L∞(I,L2(Ω)) + ‖∂tta‖L∞(I,L2(Ω))

+‖∂ttz
∗‖L∞(I,L2(Ω)) + ‖∂ttλ

∗‖L∞(I,L2(Ω))

)

.

In order to completely discretize the problem (3.1)-(3.5), we choose discontinuous Galerkin piecewise
constant approximation of the control variable. Let Ud be the finite dimensional subspace of U
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defined by
Ud = {vd ∈ L2(I) : vd|In = constant} ∀n = 1, 2, · · ·, N.

Let Ud,ad = Ud ∩Uad and σ = σ(h, k, d) be the discretization parameter. The completely discretized
problem reads as:

min
uσ∈Ud,ad

J(θσ, aσ, uσ) subject to (5.35)

N
∑

n=1

(∂taσ, w)In,Ω +

N−1
∑

n=1

([aσ ]n, w
+
n ) + (a+

σ,0, w
+
0 ) = (f(θσ, aσ), w)I,Ω, (5.36)

aσ(0) = 0, (5.37)

ρcp

N
∑

n=1

(∂tθσ, v)In,Ω +K(▽θσ,▽v)I,Ω + ρcp

N−1
∑

n=1

([θσ]m, v
+
m) + ρcp(θ

+
σ,0, v

+
0 )

= −ρL(f(θσ, aσ), v)I,Ω + (αuσ , v)I,Ω,

+ρcp(θ0, v
+
0 ), (5.38)

θσ(0) = θ0 (5.39)

for all (v,w) ∈ Xq
hk ×Xq

hk.
We consider the case of piecewise constant approximation in time for the state equation (5.36)-(5.39),
which can be rewritten as: for n = 1, 2, · · ·, N , find (θn

σ , a
n
σ) ∈ Vh × Vh such that

(

an
σ − an−1

σ

kn
, w

)

=
1

kn

(
∫

In

f(θn
σ , a

n
σ)ds,w

)

, (5.40)

aσ(0) = 0, (5.41)

ρcp

(

θn
σ − θn−1

σ

kn
, v

)

+K(▽θn
σ ,▽v) = −ρL

(

1

kn

∫

In

f(θn
σ , a

n
σ)ds, v

)

+

(

1

kn

∫

In

αuσds, v

)

, (5.42)

θσ(0) = θh,0, (5.43)

∀(w, v) ∈ Vh × Vh.

Lemma 5.1. For a fixed control uσ ∈ Ud,ad, the solution (θσ, aσ) ∈ Xq
hk × Xq

hk of (5.36)-(5.39),
satisfies the following a priori bounds:

N
∑

n=1

(

‖∂tθσ‖
2
Ω,In

+ ‖∆hθσ‖
2
Ω,In

)

≤ C,
N

∑

n=1

‖∂taσ‖
2
Ω,In

≤ C. (5.44)

Further for piecewise constant approximation, we have

‖θn
σ‖

2 +

n
∑

l=1

‖∇θl
σ‖

2 ≤ C, ‖an
σ‖

2 ≤ C (5.45)

where ∆h : Vh × Vh is the discrete Laplacian defined by

−(∆hv,w) = (∇v,∇w), ∀v,w ∈ Vh. (5.46)
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Proof. Using (5.46) in (5.38), we have

N
∑

n=1

(

ρcp(∂tθσ, v)Ω,In − (∆hθσ, v)Ω,In + ρcp([θσ]n−1, v
+
n−1)

)

=

N
∑

n=1

(

− ρL(f(θσ, aσ), v)Ω,In + (αuσ , v)Ω,In

)

. (5.47)

Put v = −∆hθσ in (5.47) to obtain

N
∑

n=1

(

ρcp(∂tθσ,−∆hθσ)Ω,In − (∆hθσ,−∆hθσ)Ω,In + ρcp([θσ]n−1,−∆hθ
+
σ,n−1)

)

=

N
∑

n=1

(

− ρL(f(θσ, aσ),−∆hθσ)Ω,In + (αuσ ,−∆hθσ)Ω,In

)

. (5.48)

Again using (5.46) in first and third terms on the left hand side of (5.48), we obtain

N
∑

n=1

(

ρcp

∫

In

(∇∂tθσ,∇θσ)dt+ ‖∆hθσ‖
2
Ω,In

+ ρcp(∇[θσ]n−1,∇θ
+
σ,n−1)

)

=
N

∑

n=1

(

− ρL(f(θσ, aσ),−∆hθσ)Ω,In + (αuσ ,−∆hθσ)Ω,In

)

. (5.49)

Now we find estimates for the terms in (5.49) one by one. Consider

∫

In

(∇∂tθσ,∇θσ)dt =

∫

In

1

2

d

dt
‖ ▽ θσ‖

2dt =
1

2

(

‖ ▽ θσ,n‖
2 − ‖▽ θ+

σ,n−1‖
2

)

(5.50)

Now consider the 3rd on the left side of (5.49)

([∇θσ]n−1,∇θ
+
σ,n−1) =

1

2

(

‖∇θ+
σ,n−1‖

2 + ‖[∇θσ]n−1‖
2 − ‖∇θσ,n−1‖

2

)

, (5.51)

Using (5.50), (5.51) in (5.49), Cauchy-Schwarz and Young’s inequalities, we have

‖∇θσ,N‖2 − ‖∇θ0‖
2 +

∑

n=1

‖∆hθσ‖
2
Ω,In

≤ C
N

∑

n=1

(

‖f(θσ, aσ)‖2
Ω,In

+ ‖αuσ‖
2
Ω,In

+ ‖∆hθσ‖
2
Ω,In

)

.

Choosing Young’s constant appropriately and using Remark 3.1, we obtain

N
∑

n=1

‖∆hθσ‖
2
K,In

is bounded. (5.52)
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Put v = (t− tn−1)∂tθσ in (5.38), use ((t− tn−1)∂tθσ)+n−1 = 0 and (5.46) to obtain

ρcp

N
∑

n=1

(∂tθσ, (t− tn−1)∂tθσ)Ω,In −

N
∑

n=1

∫

In

(∆hθσ, (t− tn−1)∂tθσ)Ω,In

=
N

∑

n=1

(

− ρL(f(θσ, aσ), (t− tn−1)∂tθσ)Ω,In

+(αuσ, (t− tn−1)∂tθσ)Ω,In

)

. (5.53)

Use Cauchy-Schwarz inequality and Young’s inequality to obtain

N
∑

n=1

∫

In

(t− tn−1)‖∂tθσ‖
2dt ≤ C

N
∑

n=1

(

‖f(θσ, aσ)‖2
Ω,In

+ ‖αuσ‖
2
Ω,In

+ ‖∆hθσ‖
2
Ω,In

+

∫

In

(t− tn−1)‖∂tθσ‖
2dt

)

Choosing Young’s constant appropriately, using (5.52) and Remark 3.1, we obtain

N
∑

n=1

∫

In

(t− tn−1)‖∂tθσ‖
2dt is bounded.

From inverse estimate, we have

N
∑

n=1

∫

In

‖∂tθσ‖
2dt ≤ C

N
∑

n=1

k−1
n

∫

In

(t− tn−1)‖∂tθσ‖
2dt

Therefore,

N
∑

n=1

(

‖∂tθσ‖
2
Ω,In

+ ‖∆hθσ‖
2
Ω,In

)

≤ C.

Similarly putting w = (t− tn−1)∂taσ in (5.36) and using Inverse estimate, we obtain

N
∑

n=1

‖∂taσ‖
2
Ω,In

≤ C.

Put v = θn
σ in (5.17) and consider

ρcp(∂̄θ
n
σ , θ

n
σ) + K(∇θn

σ ,∇θ
n
σ) = −ρL(

1

kn

∫

In

f(θn
σ , a

n
σ), θn

σ) + (
1

kn

∫

In

αuσdt, θ
n
σ) (5.54)

Using (5.23), Cauchy Schwarts and Young’s inequality, we obtain

‖θn
σ‖

2 − ‖θn−1
σ ‖ + ‖∇θn

σ‖ (5.55)

≤ C

(

‖
1

kn

∫

In

f(θσ, aσ)dt‖2 + ‖
1

kn

∫

In

αuσdt‖
2 + ‖θn

σ‖
2

)

(5.56)
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Choosing Young’s constant appropriately, Using Remark 3.1 and summing from 1 to n, we obtain

‖θn
σ‖

2 +

n
∑

l=1

‖∇θl
σ‖

2 ≤ C. (5.57)

Similarly by putting w = aσ in (5.15), using Cauchy Schwartz inequality, Young’s inequality and
summing from 1 to n we obtain

‖an
σ‖

2 ≤ C. (5.58)

Corresponding to the solution u∗σ ∈ Uad of (5.35)-(5.39), let (θ∗σ, a
∗
σ) be the solution to the

state system (5.36)-(5.39). The first order optimality conditions yield the following adjoint problem:
Find (z∗σ , λ

∗
σ) ∈ Xq

hk ×Xq
hk such that

−

N
∑

n=1

(ψ, ∂tλ
∗
σ)In,Ω −

N−1
∑

n=1

(ψ−
n , [λ

∗
σ ]n) − (ψ−

N , λ
−,∗
σ,N )

+(ψ, fa(θ
∗
σ, a

∗
σ)(ρLz∗σ − λ∗σ))I,Ω = −(ψ−

n , λ
∗
σ(T )), (5.59)

λ∗σ,N = β1(a
∗
σ(T ) − ad), (5.60)

−ρcp

N
∑

n=1

(φ, ∂tz
∗
σ)In,Ω +K(▽φ,▽z∗σ)I,Ω − ρcp

N−1
∑

n=1

(φ−n , [z
∗
σ ]n) − ρcp(φ

−
N , z

+,∗
σ,N )

+(φ, fθ(θ
∗
σ, a

∗
σ)(ρLz∗σ − λ∗σ))I,Ω = β2(φ, [θ

∗
σ − θm]+)I,Ω, (5.61)

z∗σ,N = 0, (5.62)

for all (ψ, φ) ∈ Xq
hk ×Xq

hk. Moreover, z∗σ satisfies the variational inequality,

(

β3(u
∗
σ − ud) +

∫

Ω
αz∗σdx, p − u∗σ

)

L2(I)

≥ 0 ∀p ∈ Ud,ad. (5.63)

Theorem 5.3. Let u∗σ be the optimal control of (5.35)-(5.39). Then, there exists a subsequence (still
denoted as {u∗σ}σ>0) lim

σ→0
u∗σ = u∗ exists in L2(I) and u∗ is an optimal control of (3.1)-(3.5).

Proof: Since u∗σ is an optimal control, we obtain

‖u∗σ‖L2(I) ≤ C,

that is, {u∗σ}σ>0 is uniformly bounded in L2(I). Thus, it is possible to extract a subsequence say
{u∗σ}σ>0 in L2(I) such that

u∗σ −→ u∗ weakly in L2(I). (5.64)

Since Uad ⊂ L2(I) is a closed and convex set, we have u∗ ∈ Uad. Now corresponding to each u∗σ there
exists solution (θ∗σ, a

∗
σ) to (5.36)-(5.39). Thus from Lemma ??, we have

θ∗σ −→ θ∗ weakly in L∞(I,H1(Ω)), (5.65)

θ∗σ −→ θ∗ strongly in C(I, L2(Ω)), (5.66)

a∗σ −→ a∗ weak∗ in W 1,∞(I, L∞(Ω)), (5.67)

a∗σ −→ a∗ strongly in L∞(I, L2(Ω)). (5.68)



Laser Surface Hardening of Steel 20

Now passing limit as σ → 0, using (5.65)-(5.68) and Remark 3.1 in (5.36)-(5.39), we obtain that
(u∗, θ∗, a∗) is an admissible solution for the optimal control problem (3.1)-(3.5). It now remains to
show that (u∗, θ∗, a∗) is an optimal solution.
If possible, let (ū∗, θ̄∗, ā∗) be another optimal solution of (3.1)-(3.5). Consider the auxiliary problem

N
∑

n=1

(

(∂taσ, w)Ω,In + ([aσ]n−1, w
+
n−1)

)

=

N
∑

n=1

(f(θσ, aσ), w), (5.69)

aσ(0) = 0, (5.70)
N

∑

n=1

(

ρcp(∂tθσ, v)Ω,In +K(∇θσ,∇v)Ω,In + ([θσ]n−1, v
+
n−1)

)

=

N
∑

n=1

(

− ρL(f(θσ, aσ), v)Ω,In

+(απkū
∗, v), (5.71)

θσ(0) = θ0, (5.72)

for all (w, v) ∈ Xq
hk × Xq

hk. Then, there exists a solution to (5.69)-(5.72), say (θ̄σ, āσ) ∈ H1,1 ×
W 1,∞(I, L∞(Ω)). Similar to (5.65)-(5.68), we arrive at

θ̄σ −→ θ̄ weakly in L∞(I,H1(Ω)), (5.73)

θ̄σ −→ θ̄ strongly in C(I, L2(Ω)), (5.74)

āσ −→ ā weakly in W 1,∞(I, L∞(Ω)), (5.75)

āσ −→ ā strongly in L∞(I, L2(Ω)). (5.76)

Now letting σ → 0 in (5.69)-(5.72), we obtain that (θ̄, ā) is a unique solution of (3.2)-(3.5) with
respect to the control ū∗. Since the solution to (3.2)-(3.5) for a fixed control is unique, we find that
θ̄ = θ̄∗ and ā = ā∗.
Since u∗σ is the optimal control for (5.35)-(5.39), we have

j(u∗σ) ≤ j(πkū
∗). (5.77)

Now letting σ → 0 in (5.77) and using (5.64), we obtain

j(u∗) ≤ j(ū∗). (5.78)

Note from (5.78) that if ū∗ is another optimal control, then j(ū∗) will be greater than or equal to
j(u∗) and hence, u∗ is the optimal control.

Next we need to show that lim
σ→0

‖u∗σ − u‖L2(I) = 0. Since u∗σ −→ u∗ weakly in L2(Ω), it is

enough to show that lim
σ→0

‖u∗σ‖L2(I) = ‖u∗‖L2(I). Using Lemma ?? and (5.64), we find that

lim
σ→0

β3

2
‖u∗σ‖

2
L2(I) = lim

σ→0

(

J(θ∗σ, a
∗
σ , u

∗
σ) −

β1

2
‖a∗σ(T ) − ad‖

2 −
β2

2
‖[θ∗σ − θm]+‖

2
I,Ω

)

= J(θ∗, a∗, u∗) −
β1

2
‖a∗(T ) − ad‖

2 −
β2

2
‖[θ∗ − θm]+‖

2
I,Ω

=
β3

2
‖u∗‖2

L2(I),

that is , lim
σ→0

‖u∗σ‖L2(I) = ‖u∗‖L2(I) and hence, lim
σ→0

‖u∗σ − u∗‖ = 0. This completes the rest of the

proof.
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Remark 5.1. In this paper, we have first fully discretized the laser surface hardening of steel problem
using continuous Galerkin finite element method with piecewise linear polynomials in space, discon-
tinuous Galerkin finite element method with constant approximation in time and control, and then
nonlinear conjugate method has been used for the optimization. One can also use the strategy of
optimizing the control problem first and then discretizing in space, time and control later on.

Remark 5.2. Since the workpiece used for the laser surface hardening is a thin sheet of steel,
height of the workpiece has been ignored for the analysis and numerical implementation. By making
appropriate changes in the formulation and the analysis, one can extend this to the case of a system
in R

3.

6 Numerical Experiment

For the purpose of numerical experiment, we use cG(1) for the state and adjoint variables
and dg(0) for time and control variables. We have used non-linear conjugate method [8] to evaluate
the optimal control for the complete discretized problem (5.35)-(5.39).

Physical Data [8]: The parameters in the heat equation used are given by ρcp = 4.91 J
cm3K

, k =

0.64 J
cm3K and ρL = 627.9 J

cm3K . The regularized monotone function Hǫ is chosen as

Hǫ(s) =







1 s ≥ ǫ
10(s

ǫ )
6 − 24(s

ǫ )
5 + 15(s

ǫ )
4 0 < s ≤ ǫ

0 s ≤ 0

where ǫ = 0.15. The initial temperature θ0 and the melting temperature θm are chosen as 20 and
1800, respectively. Pointwise data for aeq(θ) and τ(θ) are given by

θ 730 830 840 930

aeq(θ) 0 0.91 1 1

τ(θ) 1 0.2 0.18 0.05

The shape function α(x, y, t) is given by α(x, y, t) = 4k1A
πD2 exp(−

2(x−vt)2

D2 )exp(k1y), whereD = 0.47cm, k1 =
60/cm,A = 0.3cm and v = 1cm/s. In the nonlinear conjugate gradient method tolerance is chosen
as 10−7.

Example: In the following numerical experiment we choose β1 = 7500, β2 = 1000 and β3 = 10−3.
The main aim of this experiment is to achieve a constant hardening depth of 1mm , see Figure
3, with expected order of convergence O(h2 + k) for the approximation of (θ, a) and u. To apply
non-linear conjugate method for the optimal control problem, we take u0 (initial control) and ud

(desired control) as 1404.
When the finite element method is applied, the mesh used for space discretization is more

refined near the area, where hardness is desired. With the initial control as u0, we find that ‖a0
σ(T )−

ad‖ = 0.239547, where a0
σ corresponds to the austenite value for initial control u0, which is being

reduced to ‖aoptimal
σ (T ) − ad‖ = 0.073632 after applying non-linear conjugate method. Comparison

of Figure 3 and Figure 4(a) shows that the goal of uniform hardening depth is nearly acheived. Also,
the state constraint that ‖θ‖L∞(Q) < 1800 is satisfied, since ‖θσ‖L∞(Q) < 1200, see Figure 4(b).
Figure 5 shows the evolution of control variable (laser energy) in time. At first the laser energy has
increased and then during the long term it can be kept a constant. Towards the end of the process it
has to be reduced to cope the accumulation of the heat at the end of the plate. The numerical results
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Figure 3: Goal ad to be achieved for the volume fraction of austenite
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Figure 4: (a)The volume fraction of the austenite at time t = T (b)The temperature at time t = T

confirm with those obtained in [8], though error estimates have not been developed in [8]. Figure 6
represents ‖E1‖ = ‖θ − θhk‖ and ‖E2‖ = ‖a− ahk‖ as a function of the discretization step k in the
log-log scale when T = 5.25. It is shown that the slope is approximately 2 confirming the theoretical
order of convergence. Figure 7, shows ‖E1‖ and ‖E2‖ as a function of discretization step h in the
log-log scale when T = 5.25. The slope is approximately 2, which justifies the theoretical order of
convergence. Figure 8 represents the graph of ‖e(u)‖ = ‖u− uσ‖ as a function of the discretization
parameter k in the log-log scale. It is shown that the slope is approximately equal to 2.
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Figure 5: Laser energy
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Figure 6: Refinement of the time steps for number of 525 nodes in spatial triangulation
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