11 research outputs found

    Techniques for improving the water-flooding of oil fields during the high water-cut stage

    Get PDF
    International audienceThe multi-layer co-exploitation method is often used in offshore oilfields because of the large spacing between the injection and production wells. As oilfields gradually enter the high water-cut stage, the contradiction between the horizontal and vertical directions becomes more prominent, and the distribution of the remaining oil is more complex. Oilfields are facing unprecedented challenges in further enhancing oil recovery. Using oilfield A, which is in the high water-cut stage, as the research object, we compiled a detailed description of the remaining oil during the high water-cut stage using the information collected during the comprehensive adjustment and infilling of the oilfield. In addition various techniques for tapping the potential reservoir, stabilizing the oil, and controlling the water were investigated. A set of key techniques for the continuous improvement of the efficiency of water injection after comprehensive adjustment of high water-cut fields was generated. Based on the determined configuration of the offshore deltaic reservoir, a set of detailed descriptive methods and tapping technology for extracting the remaining oil in the offshore high water-cut oilfield after comprehensive adjustment was established. By considering the equilibrium displacement and using a new quantitative characterization method that includes displacement, a new technique for determining the quantity of water that needs to be injected into a stratified injection well during the high water-cut stage was established. Based on the principle of flow field intensity reconfiguration, a linear, variable-intensity, alternating injection and withdrawal technique was proposed. With the application of this series of techniques, the increase in the water content was controlled to within 1%, the natural reduction rate was controlled to within 9%, and the production increased by 1.060 × 107 m3

    Linifanib (ABT-869) Potentiates the Efficacy of Chemotherapeutic Agents through the Suppression of Receptor Tyrosine Kinase-Mediated AKT/mTOR Signaling Pathways in Gastric Cancer

    Get PDF
    Gastric cancer, highly dependent on tumor angiogenesis, causes uncontrolled lethality, in part due to chemoresistance. Here, we demonstrate that linifanib (ABT-869), a novel multi-targeted receptor tyrosine kinase inhibitor, markedly augments cytotoxicity of chemotherapies in human gastric cancer. ABT-869 and chemotherapeutic agents exhibited a strong synergy to inhibit the viability of several gastric cancer cell lines, with combination index values ranging from 0.017 to 0.589. Additionally, the combination of ABT-869 and chemotherapeutic agents led to remarkable suppression of vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo. Importantly, in a preclinical gastric cancer xenograft mouse model, drug co-treatments led to increased mouse survival as well as a synergistic reduction in tumor size and the inhibition of tumor angiogenesis. Mechanistic studies further revealed that all of the co-treatments containing ABT-869 resulted in decreased activation of the VEGF receptor, the epidermal growth factor receptor and the insulin growth factor receptor. Inhibition of these receptor tyrosine kinases consequently attenuated the activation of the downstream AKT/mTOR signaling pathway both in cultured gastric cancer cells and in gastric cancer xenografts. Collectively, our findings suggest that the addition of ABT-869 to traditional chemotherapies may be a promising strategy for the treatment of human gastric cancer

    Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    Get PDF
    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21(WAF1/CIP1), leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21(WAF1/CIP1), either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21(WAF1/CIP1). Co-administration of BI-2536 and fasudil either in the LSL-KRAS(G12D) mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers

    Formation damage due to asphaltene precipitation during CO

    No full text
    In order to quantitatively evaluate the pore-scale formation damage of tight sandstones caused by asphaltene precipitation during CO2 flooding, the coreflood tests and Nuclear Magnetic Resonance (NMR) relaxometry measurements have been designed and applied. Five CO2 coreflood tests at immiscible, near-miscible and miscible conditions were conducted and the characteristics of the produced oil and gas were analyzed. For each coreflood test, the T2 spectrum of the core sample was measured and compared before and after CO2 flooding to determine the asphaltene precipitation distribution in pores. It is found that, the solubility and extraction effect of the CO2 plays a more dominant role in the CO2-EOR (Enhanced Oil Recovery) process with higher injection pressure. And, more light components are extracted and recovered by the CO2 and more heavy components including asphaltene are left in the core sample. Thus, the severity of formation damage influenced by asphaltene precipitation increases as the injection pressure increases. In comparison to micro and small pores (0.1–10 ms), the asphaltene precipitation has a greater influence on the medium and large pores (10–1000 ms) due to the sufficient interaction between the CO2 and crude oil in the medium and large pores. Furthermore, the asphaltene precipitation not only causes pore clogging, but also induces rock wettability to alter towards oil-wet direction

    Nursing of Gastrointestinal Peristalsis Function Recovery after Abdominal Mirror Surgery for Rectal Cancer Patients Based on Intelligent Electronic Medicine

    No full text
    In recent years, with the rapid development of colorectal surgery technology and laparoscopic instruments, laparoscopic radical resection of colorectal cancer has been widely used. Although laparoscopic surgery has the characteristics of small trauma, less blood loss, less hospitalization days, and low incidence of adverse reactions such as incision infection, it is still inevitable to have different degrees of gastrointestinal dysfunction after surgery. This paper mainly studies the recovery nursing of gastrointestinal peristalsis after abdominal mirror in rectal cancer patients based on intelligent electronic medicine. In this paper, an intelligent medical monitoring system is designed for the posterior care of rectal cancer patients with abdominal mirror image, which can realize the collection and transmission of wireless sign parameters of postoperative rectal cancer patients and improve the efficiency of postoperative monitoring in medical work. All parameter data are sent to the Lora base station in real time via Lora wireless communication, which is then uploaded to the medical monitoring platform. The experimental results showed that the first postoperative exhaust time of the treatment group using the intelligent medical monitoring system was significantly shortened, and the difference was statistically significant (P<0.05). The first defecation time was shortened, and the difference was statistically significant (P<0.05). The recovery time of total fluid diet was shortened, and the difference was statistically significant (P<0.05). The above results indicate that the intelligent medical monitoring device designed in this paper has positive significance for improving the work efficiency of the hospital, the clinical experience of patients after abdominal mirror surgery for rectal cancer, and the real-time monitoring of signs of patients in intensive care

    Experimental Investigation on the Effects of CO<sub>2</sub> Displacement Methods on Petrophysical Property Changes of Ultra-Low Permeability Sandstone Reservoirs Near Injection Wells

    No full text
    The petrophysical properties of ultra-low permeability sandstone reservoirs near the injection wells change significantly after CO2 injection for enhanced oil recovery (EOR) and CO2 storage, and different CO2 displacement methods have different effects on these changes. In order to provide the basis for selecting a reasonable displacement method to reduce the damage to these high water cut reservoirs near the injection wells during CO2 injection, CO2-formation water alternate (CO2-WAG) flooding and CO2 flooding experiments were carried out on the fully saturated formation water cores of reservoirs with similar physical properties at in-situ reservoir conditions (78 &#176;, 18 MPa), the similarities and differences of the changes in physical properties of the cores before and after flooding were compared and analyzed. The measurement results of the permeability, porosity, nuclear magnetic resonance (NMR) transversal relaxation time (T2) spectrum and scanning electron microscopy (SEM) of the cores show that the decrease of core permeability after CO2 flooding is smaller than that after CO2-WAG flooding, with almost unchanged porosity in both cores. The proportion of large pores decreases while the proportion of medium pores increases, the proportion of small pores remains almost unchanged, the distribution of pore size of the cores concentrates in the middle. The changes in range and amplitude of the pore size distribution in the core after CO2 flooding are less than those after CO2-WAG flooding. After flooding experiments, clay mineral, clastic fines and salt crystals adhere to some large pores or accumulate at throats, blocking the pores. The changes in core physical properties are the results of mineral dissolution and fines migration, and the differences in these changes under the two displacement methods are caused by the differences in three aspects: the degree of CO2-brine-rock interaction, the radius range of pores where fine migration occurs, the power of fine migration

    Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model

    No full text
    Abstract Background We previously performed targeted sequencing of autism risk genes in probands from the Autism Clinical and Genetic Resources in China (ACGC) (phase I). Here, we expand this analysis to a larger cohort of patients (ACGC phase II) to better understand the prevalence, inheritance, and genotype–phenotype correlations of likely gene-disrupting (LGD) mutations for autism candidate genes originally identified in cohorts of European descent. Methods We sequenced 187 autism candidate genes in an additional 784 probands and 85 genes in 599 probands using single-molecule molecular inversion probes. We tested the inheritance of potentially pathogenic mutations, performed a meta-analysis of phase I and phase II data and combined our results with existing exome sequence data to investigate the phenotypes of carrier parents and patients with multiple hits in different autism risk genes. Results We validated recurrent, LGD, de novo mutations (DNMs) in 13 genes. We identified a potential novel risk gene (ZNF292), one novel gene with recurrent LGD DNMs (RALGAPB), as well as genes associated with macrocephaly (GIGYF2 and WDFY3). We identified the transmission of private LGD mutations in genes predominantly associated with DNMs and showed that parental carriers tended to share milder autism-related phenotypes. Patients that carried DNMs in two or more candidate genes show more severe phenotypes. Conclusions We identify new risk genes and transmission of deleterious mutations in genes primarily associated with DNMs. The fact that parental carriers show milder phenotypes and patients with multiple hits are more severe supports a multifactorial model of risk

    Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission

    No full text
    RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely genedisrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITSCLIP revealed that Csde1binding targets are enriched in autismassociated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity–related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autismrelated syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission

    Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission

    No full text
    RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neuro-developmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission
    corecore