487 research outputs found

    Anisotropic magnetoresistive and magnetic properties of La_{0.5}Sr_{0.5}CoO_{3-\delta} film

    Full text link
    The magnetic and transport properties of La_{0.5}Sr_{0.5}CoO_{3-\delta} film grown on a LaAlO_3 substrate by pulsed-laser deposition are studied. The properties are found to be influenced by the magnetic anisotropy and inhomogeneity. Magnetoresistance anisotropy is determined by the shape anisotropy of the magnetization and the strain-induced magnetic anisotropy due to the film-substrate lattice interaction. Indications of the temperature-driven spin reorientation transition from an out-of plane orderded state at low temperatures to an in-plane ordered state at high temperatures as a result of competition between the mentioned sources of magnetic anisotropy are found.Comment: 5 pages, 8 figures, submitted to Fiz. Nizk. Temp, an extended version of short communication in cond-mat/020734

    Non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta}

    Full text link
    The unusual non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta} with excess oxygen has been observed. The resistance is measured as a function of applied voltage U (10^{-3} V - 25 V) in the temperature range 5 K 0.1 V) the conduction of sample investigated corresponds well to Mott's variable-range hopping (VRH). An unusual conduction behavior is found, however, in low voltage range (approximately below 0.1 V), where the influence of electric field and (or) electron heating effect on VRH ought to be neglected. Here we have observed strong increase in resistance at increasing U at T < 20 K, whereas at T > 20 K the resistance decreases with increasing U. The magnetoresistance of the sample below 20 K has been positive at low voltage and negative at high voltage. The observed non-Ohmic behavior is attributable to inhomogeneity of the sample, and namely, to the enrichment of sample surface with oxygen during the course of the heat treatment of the sample in helium and air atmosphere before measurements. At low enough temperature (below 20 K) the surface layer with increased oxygen concentration is presumed to consist of disconnected superconducting regions (with T_{c} about 20 K) in poor-conducting matrix. The results obtained demonstrate that transport properties of cuprate oxides may be determined in essential degree by structural or stoichimetric inhomogeneities. This should be taken into account at evaluation of "quality" of high-temperature superconductors on the basis of transport properties measurements.Comment: 12 pages, REVTex, 11 Postscript figures, To be published in Fizika Nizkikh Temperatur (published by AIP as Low Temperature Physics

    Control of scroll wave turbulence using resonant perturbations

    Get PDF
    Turbulence of scroll waves is a sort of spatio-temporal chaos that exists in three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky reaction are examples of such media. In cardiac tissue, chaotic behaviour is believed to underlie fibrillation which, without intervention, precedes cardiac death. In this study we investigate suppression of the turbulence using stimulation of two different types, "modulation of excitability" and "extra transmembrane current". With cardiac defibrillation in mind, we used a single pulse as well as repetitive extra current with both constant and feedback controlled frequency. We show that turbulence can be terminated using either a resonant modulation of excitability or a resonant extra current. The turbulence is terminated with much higher probability using a resonant frequency perturbation than a non-resonant one. Suppression of the turbulence using a resonant frequency is up to fifty times faster than using a non-resonant frequency, in both the modulation of excitability and the extra current modes. We also demonstrate that resonant perturbation requires strength one order of magnitude lower than that of a single pulse, which is currently used in clinical practice to terminate cardiac fibrillation. Our results provide a robust method of controlling complex chaotic spatio-temporal processes. Resonant drift of spiral waves has been studied extensively in two dimensions, however, these results show for the first time that it also works in three dimensions, despite the complex nature of the scroll wave turbulence.Comment: 13 pages, 12 figures, submitted to Phys Rev E 2008/06/13. Last version: 2008/09/18, after revie
    • …
    corecore