565 research outputs found

    Antarctic Meteorites: A Statistical Look at a Uniquely Valuable Resource

    Get PDF
    As of the end of the 2018-19 field season, the U.S. Antarctic meteorite program has surpassed 23,000 meteorites collected. The U.S. collection is valuable in that it is classified in its entirety. The systematic methods employed to collect the meteorites have provided meteorites of more than 40 types, many of which are the first of their type ever recognized. One of the early drivers for consistent and methodical characterization of the entire U.S. Antarctic collection was to allow statistical comparisons. Early statistical assessments of the U.S. Antarctic collection examined mass distributions and the relative frequency of meteorite types as well as comparisons to a defined set of modern falls. Using these statistics argued that the flux of H chondrites changed over time used model size distributions to deconstruct the contribution of wind movement, meteorite supply and search losses to the Antarctic collection. Mass-based statistics and size distribution comparisons were examined by investigated various aspects of the statistics, including comparison with modern falls/Saharan finds. Also discuss geospatial statistics provides a comprehensive overview of the statistics of the Antarctic collections for the first 35 seasons of U.S. collection by ANSMET. Here we build upon that assessment and that from

    Effect of Silicon on the Activity Coefficient of Rhenium in Fe-Si Liquids: Implications for HSE and Os Isotopes in Planetary Mantles

    Get PDF
    Metallic cores contain light alloying elements that can be a combination of S, C, Si, and O, all of which have important chemical and physical influences. For Earth, Si may be the most abundant light element in the core. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE), and thus the partitioning behavior of those elements between core and mantle. The effect of Si on the highly siderophile elements is only beginning to be studied and the effects on Au, Pd and Pt are significant. Here we report new experiments designed to quantify the effect of Si on the partitioning of Re between metal and silicate melt. A solid understanding of Re partitioning is required for a complete understanding of the Re-Os isotopic systems. The results will be applied to understanding the HSEs and Os isotopic data for planetary mantles, and especially Earth

    The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    Get PDF
    Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of how large the effect of Si can be, these epsilon values correspond to activity coefficients (gamma) for As of 0.01 when XSi = 0, and up to gamma = 23 when XSi = 0.2. Combining these new results with previous determinations [5,6] of epsilon parameters for S and C for these elements allows us calculate activity of Ge, In, As, and Sb in Fe-Ni-Si-S-C-O metallic liquids. We apply this new model to sever-al terrestrial bodies such as Earth (Si-rich core), Mars (S-rich core), Moon (S-, C-, and Si-poor core), and Vesta, and examine the resulting core and mantle concentrations of these elements. Mantle concentrations of these four elements are well explained for Earth and Mars in models that call for mid-mantle equilibration between Si-bearing and S-bearing FeNi cores, respectively. Modeling results for the Moon and Vesta will also be presented

    Scientific Bounty Among Meteorites Recovered from the Dominion Range, Transantarctic Mountains

    Get PDF
    The US Antarctic Meteorite Pro-gram has visited the Dominion Range in the Transantarctic Mountains during several different sea-sons, including 1985, 2003, 2008, 2010, 2014 and 2018. Total recovered meteorites from this region is close to 3000. The 1985 (11 samples), 2003 (141 samples), 2008 (521 samples), 2010 (901 samples), 2014 (562 samples) seasons have been fully classified, and 2018 (865 samples) are in the process of being classified and characterized. Given that close to 2200 samples have been classified so far, with more expected in 2020, now is a good time to summarize the state of the collection. Here we describe the significant samples documented from this area, as well as a large meteorite shower that dominates the statistics of the region

    Experiments on Lunar Core Composition: Phase Equilibrium Analysis of A Multi-Element (Fe-Ni-S-C) System

    Get PDF
    Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions

    High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Get PDF
    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred

    Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Get PDF
    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation

    Iron redox systematics of martian magmas.

    Get PDF
    第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講

    Iron Redox Systematics of Martian Magmas

    Get PDF
    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2

    V Xanes in Spinels as an Oxy-Barometer in Meteorites with Implications for Redox Variations in the Inner Solar System

    Get PDF
    The variation of oxygen fugacity within inner solar system materials spans a range of nearly 15 orders of magnitude. Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or con-strained such as FeTi oxides, olivine-opx-spinel, or some other oxy-barometer. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO2 using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO2 of many of these achondrites is not well known, other than being "reduced" and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in achondrite. Because the V pre-edge peak intensity and energy in chromites varies with fO2, and this has been calibrated over a large fO2 range, we can apply this relation to rocks for which we otherwise have no fO2 constraints
    corecore