3,459 research outputs found
Altered excitation-contraction coupling in human chronic atrial fibrillation
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca<sup>2+</sup> transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy
Dynamics of Passive-Scalar Turbulence
We present the first study of the dynamic scaling or multiscaling of
passive-scalar and passive-vector turbulence. For the Kraichnan version of
passive-scalar and passive-vector turbulence we show analytically, in both
Eulerian and quasi-Lagrangian frameworks, that simple dynamic scaling is
obtained but with different dynamic exponents. By developing the multifractal
model we show that dynamic multiscaling occurs in passive-scalar turbulence
only if the advecting velocity field is itself multifractal. We substantiate
our results by detailed numerical simulations in shell models of passive-scalar
advection.Comment: published versio
Random spread on the family of small-world networks
We present the analytical and numerical results of a random walk on the
family of small-world graphs. The average access time shows a crossover from
the regular to random behavior with increasing distance from the starting point
of the random walk. We introduce an {\em independent step approximation}, which
enables us to obtain analytic results for the average access time. We observe a
scaling relation for the average access time in the degree of the nodes. The
behavior of average access time as a function of , shows striking similarity
with that of the {\em characteristic length} of the graph. This observation may
have important applications in routing and switching in networks with large
number of nodes.Comment: RevTeX4 file with 6 figure
Characterization and control of small-world networks
Recently Watts and Strogatz have given an interesting model of small-world
networks. Here we concretise the concept of a ``far away'' connection in a
network by defining a {\it far edge}. Our definition is algorithmic and
independent of underlying topology of the network. We show that it is possible
to control spread of an epidemic by using the knowledge of far edges. We also
suggest a model for better advertisement using the far edges. Our findings
indicate that the number of far edges can be a good intrinsic parameter to
characterize small-world phenomena.Comment: 9 pages and 6 figure
Condensation of Silica Nanoparticles on a Phospholipid Membrane
The structure of the transient layer at the interface between air and the
aqueous solution of silica nanoparticles with the size distribution of
particles that has been determined from small-angle scattering has been studied
by the X-ray reflectometry method. The reconstructed depth profile of the
polarizability of the substance indicates the presence of a structure
consisting of several layers of nanoparticles with the thickness that is more
than twice as large as the thickness of the previously described structure. The
adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the
hydrosol/air interface is accompanied by the condensation of anion silica
nanoparticles at the interface. This phenomenon can be qualitatively explained
by the formation of the positive surface potential due to the penetration and
accumulation of Na+ cations in the phospholipid membrane.Comment: 7 pages, 5 figure
Direct torque control scheme for a six-phase induction motor with reduced torque ripple
This paper presents an improved direct torque control (DTC) method for an asymmetrical six-phase induction motor using a two-level six-phase inverter. As is well-known, a simple extension of three-phase direct torque control technique to an asymmetrical six-phase motor, using large vectors only, introduces significant current harmonics of the order 6n±1 (n = 1,3,5,…), which are mapped into the non-flux/torque producing (xy) plane. These harmonics cause only losses in the motor winding as they do not take part in torque production. Hence a number of different improved DTC techniques have been developed in the past for multiphase motor drives. The paper takes one such DTC method as the starting point and improves it further by using the concept of virtual voltage vectors. Developed vector selection algorithm, based on two virtual voltage vectors, requires the information on position of the flux in the auxiliary (xy) subspace and provides stator current quality commensurate with the currently available best DTC algorithm for six-phase drives. However, use of two virtual voltage vectors enables a substantial reduction of the torque ripple, which is achieved by means of a five-level torque comparator. Extensive experimentation is performed and it is shown that the reduction of the current harmonics is in essence almost the same as in another recently developed DTC scheme, based on the use of a single virtual voltage vector. However, the achieved torque ripple reduction, which is verified experimentally, makes the scheme superior when compared to the existing approaches. At the same time, developed scheme retains qualities of conventional DTC schemes, such as simple structure and fast response. Its additional beneficial feature is the easiness of implementation
Evidence for Excimer Photoexcitations in an Ordered {\pi}-Conjugated Polymer Film
We report pressure-dependent transient picosecond and continuous-wave
photomodulation studies of disordered and ordered films of
2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene). Photoinduced
absorption (PA) bands in the disordered film exhibit very weak pressure
dependence and are assigned to intrachain excitons and polarons. In contrast,
the ordered film exhibits two additional transient PA bands in the midinfrared
that blueshift dramatically with pressure. Based on high-order configuration
interaction calculations we ascribe the PA bands in the ordered film to
excimers. Our work brings insight to the exciton binding energy in ordered
films versus disordered films and solutions. The reduced exciton binding energy
in ordered films is due to new energy states appearing below the continuum band
threshold of the single strand.Comment: 5.5 pages, 5 figure
Edge wetting of an Ising three-dimensional system
The effect of edge on wetting and layering transitions of a three-dimensional
spin-1/2 Ising model is investigated, in the presence of longitudinal and
surface magnetic fields, using mean field (MF) theory and Monte Carlo (MC)
simulations. For T=0, the ground state phase diagram shows that there exist
only three allowed transitions, namely: surface and bulk transition, surface
transition and bulk transition. However, there exist a surface intra-layering
temperature , above which the surface and the intra-layering surface
transitions occur. While the bulk layering and intra-layering transitions
appear above an other finite temperature . These
surface and bulk intra-layering transitions are not seen in the perfect
surfaces case.
Numerical values of and , computed by Monte Carlo
method are found to be smaller than those obtained using mean field theory.
However, the results predicted by the two methods become similar, and are
exactly those given by the ground state phase diagram, for very low
temperatures. On the other hand, the behavior of the local magnetizations as a
function of the external magnetic field, shows that the transitions are of the
first order type. and decrease when increasing the
system size and/or the surface magnetic field. In particular,
reaches the wetting temperature for sufficiently large system sizes.Comment: 11 Pages latex, 12 Figures P
Superfluid, Mott-Insulator, and Mass-Density-Wave Phases in the One-Dimensional Extended Bose-Hubbard Model
We use the finite-size density-matrix-renormalization-group (FSDMRG) method
to obtain the phase diagram of the one-dimensional () extended
Bose-Hubbard model for density in the plane, where and
are, respectively, onsite and nearest-neighbor interactions. The phase diagram
comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density
Wave (MDW). For small values of and , we get a reentrant SF-MI-SF phase
transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We
show, by a detailed finite-size scaling analysis, that the MI-SF transition is
of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both KT and
two-dimensional-Ising characters. For large values of and we get a
direct, first-order, MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase
boundaries join at a bicritical point at (.Comment: 10 pages, 15 figure
Small-World Networks: Links with long-tailed distributions
Small-world networks (SWN), obtained by randomly adding to a regular
structure additional links (AL), are of current interest. In this article we
explore (based on physical models) a new variant of SWN, in which the
probability of realizing an AL depends on the chemical distance between the
connected sites. We assume a power-law probability distribution and study
random walkers on the network, focussing especially on their probability of
being at the origin. We connect the results to L\'evy Flights, which follow
from a mean field variant of our model.Comment: 11 pages, 4 figures, to appear in Phys.Rev.
- …
