4 research outputs found

    Synthesis, Spectral Analysis, Molecular Docking and Biological Evaluation of Cyclohepta[b]indole Derivatives

    Get PDF
    A new series of specifically substituted cyclohepta[b]indole derivatives from the precursor thiophen-2-ylmethylene has been synthesized. The structures of synthesized derivatives were established by spectral and elemental analyses. The docking studies with protein kinase CK2 was performed, derivative 6c exhibited the most excellent glide and E model score of –7.61 and –58.27, respectively. In-vitro anticancer activity against cervical cancer cell line (HeLa) was studied. The IC50 values were compared with the standard drug Ellipticine. Compounds 5c, 6c and 6d showed better IC50 value when compared to the other molecules. The derivatives were evaluated for their antibacterial activity against the reference drugs Sparfloxacin and Norfloxacin using agar dilution method. The derivatives 4a–d exhibited better MIC values against Gram-positive bacteria and Gram-negative bacteria when compared with remaining derivatives. Structure activity relationship (SAR) analyses established that the derivatives are potential lead compounds for future drug development studies. This work is licensed under a Creative Commons Attribution 4.0 International License

    Biosurfactants produced by Bacillus subtilis A1 and Pseudomonas stutzeri NA3 reduce longevity and fecundity of Anopheles stephensi and show high toxicity against young instars

    Get PDF
    Anopheles stephensi acts as vector of Plasmodium parasites, which are responsible for malaria in tropical and subtropical areas worldwide. Currently, malaria management is a big challenge due to the presence of insecticide-resistant strains as well as to the development of Plasmodium species highly resistant to major antimalarial drugs. Therefore, the present study focused on biosurfactant produced by two bacteria Bacillus subtilis A1 and Pseudomonas stutzeri NA3, evaluating them for insecticidal applications against malaria mosquitoes. The produced biosurfactants were characterized using FT-IR spectroscopy and gas chromatography-mass spectrometry (GC-MS), which confirmed that biosurfactants had a lipopeptidic nature. Both biosurfactants were tested against larvae and pupae of A. stephensi. LC50 values were 3.58 (larva I), 4.92 (II), 5.73 (III), 7.10 (IV), and 7.99 (pupae) and 2.61 (I), 3.68 (II), 4.48 (III), 5.55 (IV), and 6.99 (pupa) for biosurfactants produced by B. subtilis A1 and P. stutzeri NA3, respectively. Treatments with bacterial surfactants led to various physiological changes including longer pupal duration, shorter adult oviposition period, and reduced longevity and fecundity. To the best of our knowledge, there are really limited reports on the mosquitocidal and physiological effects due to biosurfactant produced by bacterial strains. Overall, the toxic activity of these biosurfactant on all young instars of A. stephensi, as well as their major impact on adult longevity and fecundity, allows their further consideration for the development of insecticides in the fight against malaria mosquitoes

    Mosquitocidal, Antimalarial and Antidiabetic Potential of Musa paradisiaca-Synthesized Silver Nanoparticles: In Vivo and In Vitro Approaches

    No full text
    The development of pathogens and parasites resistant to synthetic drugs has created the need for developing alternative approaches to fight vector-borne diseases. In this research, we fabricated green-synthesized silver nanoparticles (AgNP) using Musa paradisiaca stem extract as a reducing and stabilizing agent. AgNP showed plasmon resonance reduction under UV–Vis spectrophotometry, SEM and XRD highlighted that they were crystalline in nature with face centered cubic geometry. The FTIR spectrum of AgNP exhibited main peaks at 464.74, 675.61, 797.07, 1059.42, 1402.58, 1639.69, 2115.61 and 3445.75 cm−1. AgNP showed growth inhibition activity against bacteria and fungi of public health relevance. AgNP were a valuable candidate for treatment of diabetes in STZ-treated rat by normalizing glucose, galactose and insulin. AgNP were toxic against larvae and pupae of the malaria vector Anopheles stephensi, with LC50 of 3.642 (I), 5.497 (II), 8.561 (III), 13.477 (IV), and 17.898 ppm (pupae), respectively. Furthermore, the antiplasmodial activity of nanoparticles was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum, IC50 were 84.22 μg/ml (CQ-s) and 89.24 μg/ml (CQ-r), while chloroquine IC50 were 86 μg/ml (CQ-s) and 91 μg/ml (CQ-r). Overall, we add knowledge on the multipurpose effectiveness of green-fabricated nanoparticles in medicine and parasitology, which can be potentially helpful to develop newer and safer antiplasmodial agents and vector control tools
    corecore