3 research outputs found

    TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance

    Get PDF
    Sites that are important for biodiversity conservation can also provide significant benefits (i.e. ecosystem services) to people. Decision-makers need to know how change to a site, whether development or restoration, would affect the delivery of services and the distribution of any benefits among stakeholders. However, there are relatively few empirical studies that present this information. One reason is the lack of appropriate methods and tools for ecosystem service assessment that do not require substantial resources or specialist technical knowledge, or rely heavily upon existing data. Here we address this gap by describing the Toolkit for Ecosystem Service Site-based Assessment (TESSA). It guides local non-specialists through a selection of relatively accessible methods for identifying which ecosystem services may be important at a site, and for evaluating the magnitude of benefits that people obtain from them currently, compared with those expected under alternative land-uses. The toolkit recommends use of existing data where appropriate and places emphasis on enabling users to collect new field data at relatively low cost and effort. By using TESSA, the users could also gain valuable information about the alternative land-uses; and data collected in the field could be incorporated into regular monitoring programmes

    Historical and Projected Variations of Precipitation and Temperature and Their Extremes in Relation to Climatic Indices over the Gandaki River Basin, Central Himalaya

    No full text
    Changes in precipitation and temperature, especially in the Himalayan region, will have repercussions for socio-economic conditions in the future. Thus, this study aimed to understand the climatic trend and changes in one of the Himalayan River basins, i.e., Gandaki River Basin (GRB), Nepal. In particular, we analysed the historical (1985–2014) and projected (2015–2100) precipitation and temperature trend and their extremes using observation and 13 bias-corrected Coupled Model Intercomparison Project phase 6 (CMIP6) datasets. Additionally, the relationship between extreme precipitation/temperature indices and ocean-atmospheric circulation patterns were also analysed. The results showed an increasing trend of precipitation amount and temperature at annual and seasonal scales with the highest upward trend for precipitation in monsoon season and temperature in winter season. Among nine precipitation indices analysed, the wet extremes are projected to increase in all Shared Socioeconomic Pathways (SSP) scenarios; with the highest increment of high-intensity related extremes (R10 mm and R20 mm). In contrast, dry spells will decline in the distant-future (2075–2100) as compared to near (2015–2044) and mid-future (2045–2074). Further, increment in temperature trend resulted in a decrease in cold related temperature extremes and an increase in warm related extremes. Furthermore, it was observed that the changes in precipitation and temperature extremes over GRB were influenced by large-scale ocean-atmospheric circulation patterns. The Atlantic Multidecadal Oscillation (AMO), Sea Surface Temperature (SST) and Southern Oscillation Index (SOI) were found to have a major role in driving precipitation extremes while AMO, SST and Pacific Decadal Oscillation (PDO) have strong influence on temperature extremes. The results of this study will be useful for better understanding the implications of historical and future changes in precipitation and temperature and their extremes over the GRB
    corecore