12,423 research outputs found

    Response time correlations for platinum resistance thermometers in flowing fluids

    Get PDF
    The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases

    An Analysis of a Need-Based Student Aid Program for Georgia - Brief

    Get PDF
    This report explores issues associated with establishing a need-based student aid program in Georgia. FRC Brief 17

    An Analysis of a Need-Based Student Aid Program for Georgia

    Get PDF
    This report explores issues associated with establishing a need-based student aid program in Georgia. FRC Report 17

    Reionization constraints on primordial magnetic fields

    Full text link
    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6<z<106 < z < 10. We perform a comprehensive MCMC physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0B_0, and power-spectrum index nBn_{\scriptscriptstyle \rm B}), reionization, and Λ\LambdaCDM cosmological model. We find that magnetic field strengths in the range: B00.050.3B_0 \simeq 0.05{-}0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength B0<0.358,0.120,0.059B_0 < 0.358, 0.120, 0.059 nG (95 % c.l.) for nB=2.95,2.9,2.85n_{\scriptscriptstyle \rm B} = -2.95, -2.9, -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Effect of non-magnetic impurities on the magnetic states of anatase TiO2_2

    Full text link
    The electronic and magnetic properties of TiO2_2, TiO1.75_{1.75}, TiO1.75_{1.75}N0.25_{0.25}, and TiO1.75_{1.75}F0.25_{0.25} compounds have been studied by using \emph{ab initio} electronic structure calculations. TiO2_2 is found to evolve from a wide-band-gap semiconductor to a narrow-band-gap semiconductor to a half-metallic state and finally to a metallic state with oxygen vacancy, N-doping and F-doping, respectively. Present work clearly shows the robust magnetic ground state for N- and F-doped TiO2_2. The N-doping gives rise to magnetic moment of \sim0.4 μB\mu_B at N-site and \sim0.1 μB\mu_B each at two neighboring O-sites, whereas F-doping creates a magnetic moment of \sim0.3 μB\mu_B at the nearest Ti atom. Here we also discuss the possible cause of the observed magnetic states in terms of the spatial electronic charge distribution of Ti, N and F atoms responsible for bond formation.Comment: 11 pages, 4 figures To appear J. Phys.: Condens. Matte

    Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    Get PDF
    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10 ; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and \u3c 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure

    Assessing Linkages between E. coli Levels in Streambed Sediment and Overlying Water in an Agricultural Watershed in Iowa during the First Heavy Rain Event of the Season

    Get PDF
    This study involved field observations in Squaw Creek watershed, located in central Iowa, to investigate the impact of a heavy rain event (rainfall of 71 mm in 24 h) on E. coli levels in the streambed sediment and overlying water. We assessed relationships between streamflow and E. coli and nutrient levels in the water column and streambed sediment. The results showed that during a heavy rain event, E. coli levels in the water column varied considerably, ranging from 360 to 37,553 CFU per 100 mL with a mean of 7,598 CFU per 100 mL. Elevated streamflow resulted in greater levels of E. coli in the water column. Streambed sediment E. coli levels ranged from 896 to 6,577 CFU per 100 g with a mean of 3,355 CFU per 100 g. Regression analysis found exponential relationships between streamflow and E. coli levels in the water column (R2 = 0.56) and between streamflow and E. coli levels in the streambed sediment (R2 = 0.45). R2 values of the exponential relationship between streamflow and water column E. coli levels increased considerably when regressions for the rising and falling limbs of the hydrograph were performed separately (R2 = 0.64 and 0.94, respectively). The exponential relationship between total suspended solids (TSS) and water column E. coli levels yielded an R2 of 0.38, while TSS and streamflow yielded an exponential relationship with an R2 of 0.64. The results presented here provide information on in-stream bacteria dynamics of an agricultural watershed during the first heavy rain of the season. We anticipate that the results will improve the understanding of in-stream E. coli transport during rain events and provide insight for policy makers to allocate E. coli loads in impaired water bodies
    corecore