16,718 research outputs found

    Operational Trans-Resistance Amplifier Based Tunable Wave Active Filter

    Get PDF
    In this paper, Operational Trans-Resistance Amplifier (OTRA) based wave active filter structures are presented. They are flexible and modular, making them suitable to implement higher order filters. The circuits implement the resistors using matched transistors, operating in linear region, making them well suited for IC fabrication. They are insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. As an application, a doubly terminated third order Butterworth low pass filter has been implemented, by substituting OTRA based wave equivalents of passive elements. PSPICE simulations are given to verify the theoretical analysis

    Robust and Fast 3D Scan Alignment using Mutual Information

    Full text link
    This paper presents a mutual information (MI) based algorithm for the estimation of full 6-degree-of-freedom (DOF) rigid body transformation between two overlapping point clouds. We first divide the scene into a 3D voxel grid and define simple to compute features for each voxel in the scan. The two scans that need to be aligned are considered as a collection of these features and the MI between these voxelized features is maximized to obtain the correct alignment of scans. We have implemented our method with various simple point cloud features (such as number of points in voxel, variance of z-height in voxel) and compared the performance of the proposed method with existing point-to-point and point-to- distribution registration methods. We show that our approach has an efficient and fast parallel implementation on GPU, and evaluate the robustness and speed of the proposed algorithm on two real-world datasets which have variety of dynamic scenes from different environments

    Chiral plasma instability and primordial Gravitational wave

    Full text link
    It is known that cosmic magnetic field, if present, can generate anisotropic stress in the plasma and hence, can act as a source of gravitational waves. These cosmic magnetic fields can be generated at very high temperature, much above electroweak scale, due to the gravitational anomaly in presence of the chiral asymmetry. The chiral asymmetry leads to instability in the plasma which ultimately leads to the generation of magnetic fields. In this article, we discuss the generation of gravitational waves, during the period of instability, in the chiral plasma sourced by the magnetic field created due to the gravitational anomaly. We have shown that such gravitational wave will have a unique spectrum. Moreover, depending on the temperature of the universe at the time of its generation, such gravitational waves can have a wide range of frequencies. We also estimate the amplitude and frequency of the gravitational waves and delineate the possibility of its detection by future experiments like eLISA.Comment: 8 pages, 2 figure
    corecore