12 research outputs found

    Twitter: More than Tweets for Undergraduate Student Researchers

    Get PDF
    During the COVID-19 pandemic, biology educators were forced to think of ways to communicate with their students, engaging them in science and with the scientific community. For educators using course-based undergraduate research experiences (CUREs), the challenge to have students perform real science, analyze their work, and present their results to a larger scientific audience was difficult as the world moved online. Many instructors were able to adapt CUREs utilizing online data analysis and virtual meeting software for class discussions and synchronous learning. However, interaction with the larger scientific community, an integral component of making science relevant for students and allowing them to network with other young scientists and experts in their fields, was still missing. Even before COVID-19, a subset of students would travel to regional or national meetings to present their work, but most did not have these opportunities. With over 300 million active users, Twitter provided a unique platform for students to present their work to a large and varied audience. The Cell Biology Education Consortium hosted an innovative scientific poster session entirely on Twitter to engage undergraduate researchers with one another and with the much broader community. The format for posting on this popular social media platform challenged students to simplify their science and make their points using only a few words and slides. Nineteen institutions and over one hundred students participated in this event. Even though these practices emerged as a necessity during the COVID-19 pandemic, the Twitter presentation strategy shared in this paper can be used widely

    Pathways linking bullying victimisation and suicidal behaviours among adolescents

    Get PDF
    Aims: To examine the pathways explaining the association between bullying victimisation and suicidal behaviours among school-based adolescents. Methods: We used data from the Global School-based Student Health Survey from 90 countries conducted between 2003 and 2017. We applied multivariate regression and generalised structural equation models to examine the pathways. Results: Of 280,076 study adolescents, 32.4% experienced bullying and 12.1%, 11.1% and 10.9% reported suicidal ideation, suicidal planning and suicidal attempt, respectively. Adolescents who experienced bullying had higher rates of hunger (8.7% vs 5.0%), drinking soft drinks (44.0% vs 40.2%), truancy (35.8% vs 22.7%), smoking (14.0% vs 6.9%), alcohol consumption (19.9% vs 11.8%), peer victimisation (54.0% vs 25.6%), peer conflict (47.4% vs 20.1%), sleep disturbance (13.7% vs 5.6%), loneliness (18.1% vs 7.6%), no close friends (7.5% vs 5.2%), lack of peer support (64.9% vs 53.3%), lack of parental connectedness (67.0% vs 60.4%) and less parental bonding (64.1% vs 55.2%). Nearly one-fourth (18.7%) of the total association between bullying and suicidal ideation was mediated by loneliness. Similarly, sleep disturbances and alcohol consumption also mediated 4 to 9% of the association between bullying and suicidal behaviours. Conclusion: This study suggests targeted policies and early implementation of interventional strategies focusing on addressing loneliness, sleep disturbance and alcohol consumption to reduce the risk of adverse suicidal behaviours among adolescents

    Transitioning cell culture CURE labs from campus to online: Novel strategies for a novel time

    Get PDF
    Course-based undergraduate research experiences (CUREs) provide a way for students to gain research experience in a classroom setting. Few examples of cell culture CUREs or online CUREs exist in the literature. The Cell Biology Education Consortium (CBEC) provides a network and resources for instructors working to incorporate cell-culture based research into the classroom. In this article, we provide examples from six instructors from the CBEC network on how they structure their cell-culture CUREs and how they transitioned the labs to online in the spring semester of 2020. We intend for these examples to provide instructors with ideas for strategies to set up cell culture CUREs, how to change that design mid-term, and for creating online CUREs in the future

    Lung mucosal response to repeated inhalational insults with immunomodulatory agents in a murine model of fungal asthma: Airway epithelium takes the center stage

    Get PDF
    Asthma is a debilitating disease of the lungs affecting 235 million people worldwide. Fungus-associated asthma leads to a particularly severe type of disease, and exposure to environmental fungi and their products is unavoidable due to the ubiquitous nature of fungal species. Besides being allergenic, fungi are opportunistic pathogens, and anti-fungal and/or allergic pathways may be modified through repeated inhalation of immunomodulatory agents, affecting the outcome of fungus-induced asthma. Our aim in this project was to investigate the extent to which repeated inhalation of immunomodulatory agents influence the lung mucosal responses in a naïve murine host or in one that had been sensitized to fungal proteins (allergic). The immunomodulatory substances chosen hold relevance to human inhalational exposure, and included live or irradiation-killed Aspergillus fumigatus (a fungi) spores, deoxyxnivalenol (a mycotoxin), and fluticasone propionate (an inhalationally administered corticosteroid, commonly prescribed for allergic asthma). In a naïve host, inhalation of live A. fumigatus spores showed pathological features of fungal asthma. However, in an allergen-sensitized lung, both dead and live A. fumigatus spores established fungal airway disease, albeit to different extents. Next, we tested the effect of deoxynivalenol in an allergic host and found that its repeated inhalation did not affect pulmonary disease pathology, but did lead to a dose- and time- dependent increase in mucosal and systemic total IgA. Finally, we tested the effect of fluticasone propionate, and found that it did not influence the development of fungal airway disease, but did induce dynamic changes in lung physiology and antibody titers. Besides mimicking human inhalational exposures, inhalation ensures direct interaction of the inhaled substances with airway epithelium, which plays an important role in defense against inhaled substances and in asthma pathophysiology. By analyzing various mechanisms involved in murine lung-mucosal response to the inhaled substances, a critical involvement of airway epithelium as an orchestrator of immune responses is highlighted, and this would inform mechanism-based future studies. In conclusion, this project is likely to aid in establishing evidence based standards for fungus-related exposures and in making informed therapeutic decisions for fungus-associated diseases

    The Impact of Aspergillus fumigatus Viability and Sensitization to Its Allergens on the Murine Allergic Asthma Phenotype

    Get PDF
    Aspergillus fumigatus is a ubiquitously present respiratory pathogen. The outcome of a pulmonary disease may vary significantly with fungal viability and host immune status. Our objective in this study was (1) to assess the ability of inhaled irradiation-killed or live A. fumigatus spores to induce allergic pulmonary disease and (2) to assess the extent to which inhaled dead or live A. fumigatus spores influence pulmonary symptoms in a previously established allergic state. Our newly developed fungal delivery apparatus allowed us to recapitulate human exposure through repeated inhalation of dry fungal spores in an animal model. We found that live A. fumigatus spore inhalation led to a significantly increased humoral response, pulmonary inflammation, and airway remodeling in naïve mice and is more likely to induce allergic asthma symptoms than the dead spores. In contrast, in allergic mice, inhalation of dead and live conidia recruited neutrophils and induced goblet cell metaplasia. This data suggests that asthma symptoms might be exacerbated by the inhalation of live or dead spores in individuals with established allergy to fungal antigens, although the extent of symptoms was less with dead spores. These results are likely to be important while considering fungal exposure assessment methods and for making informed therapeutic decisions for mold-associated diseases

    Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis

    No full text
    Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator–prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes

    Factors Contributing to Sex Differences in Mice Inhaling Aspergillus fumigatus

    No full text
    Aspergillus fumigatus is a respiratory fungal pathogen and an allergen, commonly detected in flooded indoor environments and agricultural settings. Previous studies in Balb/c mice showed that repeated inhalation of live and dry A. fumigatus spores, without any adjuvant, elevated allergic immune response and airway remodeling. Sex-specific differences can influence host-pathogen interactions and allergic-asthma related outcomes. However, the effect of host sex on immune response, in the context of A. fumigatus exposure, remains unknown. In this study, we quantified the multivariate and univariate immune response of C57BL/6J mice to live, dry airborne A. fumigatus spores. Our results corroborate previous results in Balb/c mice that repeated inhalation of live A. fumigatus spores is sufficient to induce mucus production and inflammation by day 3 post last challenge, and antibody titers and collagen production by day 28 post-challenge. Principal Component Analysis (PCA) showed that females exhibited significantly higher levels of immune components than males did. Taken together, our data indicate that host-sex is an important factor in shaping the immune response against A. fumigatus, and must be considered when modeling disease in animals, in designing diagnostics and therapeutics for A. fumigatus-associated diseases or while drafting evidence-based guidelines for safe mold levels

    Squeeze-film damping of flexible microcantilevers at low ambient pressures: theory and experiment

    Get PDF
    An improved theoretical approach is proposed to predict the dynamic behavior of long, slender and flexible microcantilevers affected by squeeze-film damping at low ambient pressures. Our approach extends recent continuum gas damping models (Veijola 2004 J. Micromech. Microeng. 14 1109-18, Gallis and Torczynski 2004 J. Microelectromech. Syst. 13 653-9), which were originally derived for a rigid oscillating plate near a wall, to flexible microcantilevers for calculating and predicting squeeze-film damping ratios of higher order bending modes at reduced ambient pressures. Theoretical frequency response functions are derived for a flexible microcantilever beam excited both inertially and via external forcing. Experiments performed carefully at controlled gas pressures are used to validate our theoretical approach over five orders of the Knudsen number. In addition, we investigate the relative importance of theoretical assumptions made in the Reynolds-equation-based approach for flexible microelectromechanical systems
    corecore