15,067 research outputs found

    A Ballistic Graphene Cooper Pair Splitter

    Get PDF
    We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor and the normal metal/graphene/normal metal junctions. In this case, the electronic transport through one junction can be tuned by an applied bias along the other. We observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by using a modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam splitter model

    Stress buildup in the Himalaya

    Get PDF
    The seismic cycle on a major fault involves long periods of elastic strain and stress accumulation, driven by aseismic ductile deformation at depth, ultimately released by sudden fault slip events. Coseismic slip distributions are generally heterogeneous with most of the energy being released in the rupture of asperities. Since, on the long term, the fault's walls generally do not accumulate any significant permanent deformation, interseismic deformation might be heterogeneous, revealing zones of focused stress buildup. The pattern of current deformation along the Himalayan arc, which is known to produce recurring devastating earthquakes, and where several seismic gaps have long been recognized, might accordingly show significant lateral variations, providing a possible explanation for the uneven microseismic activity along the Himalayan arc. By contrast, the geodetic measurements show a rather uniform pattern of interseismic strain, oriented consistently with long-term geological deformation, as indicated from stretching lineation. We show that the geodetic data and seismicity distribution are reconciled from a model in which microseismicity is interpreted as driven by stress buildup increase in the interseismic period. The uneven seismicity pattern is shown to reflect the impact of the topography on the stress field, indicating low deviatoric stresses (<35 MPa) and a low friction (<0.3) on the Main Himalayan Thrust. Arc-normal thrusting along the Himalayan front and east-west extension in southern Tibet are quantitatively reconciled by the model

    Jacobi Crossover Ensembles of Random Matrices and Statistics of Transmission Eigenvalues

    Full text link
    We study the transition in conductance properties of chaotic mesoscopic cavities as time-reversal symmetry is broken. We consider the Brownian motion model for transmission eigenvalues for both types of transitions, viz., orthogonal-unitary and symplectic-unitary crossovers depending on the presence or absence of spin-rotation symmetry of the electron. In both cases the crossover is governed by a Brownian motion parameter {\tau}, which measures the extent of time-reversal symmetry breaking. It is shown that the results obtained correspond to the Jacobi crossover ensembles of random matrices. We derive the level density and the correlation functions of higher orders for the transmission eigenvalues. We also obtain the exact expressions for the average conductance, average shot-noise power and variance of conductance, as functions of {\tau}, for arbitrary number of modes (channels) in the two leads connected to the cavity. Moreover, we give the asymptotic result for the variance of shot-noise power for both the crossovers, the exact results being too long. In the {\tau} \rightarrow 0 and {\tau} \rightarrow \infty limits the known results for the orthogonal (or symplectic) and unitary ensembles are reproduced. In the weak time-reversal symmetry breaking regime our results are shown to be in agreement with the semiclassical predictions.Comment: 24 pages, 5 figure

    Current Driven Oblique Whistler Wave in the Magnetosphere of Uranus

    Get PDF

    Electronic conduction in a three-terminal molecular transistor

    Full text link
    The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a \pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor by applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.Comment: 13 pages, 5 figure
    corecore