2 research outputs found

    High-sensitivity microsatellite instability assessment for the detection of mismatch repair defects in normal tissue of biallelic germline mismatch repair mutation carriers

    No full text
    Introduction Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary cancer syndromes associated with mismatch repair (MMR) deficiency. Tumours show microsatellite instability (MSI), also reported at low levels in non-neoplastic tissues. Our aim was to evaluate the performance of high-sensitivity MSI (hs-MSI) assessment for the identification of LS and CMMRD in non-neoplastic tissues. Materials and methods Blood DNA samples from 131 individuals were grouped into three cohorts: baseline (22 controls), training (11 CMMRD, 48 LS and 15 controls) and validation (18 CMMRD and 18 controls). Custom next generation sequencing panel and bioinformatics pipeline were used to detect insertions and deletions in microsatellite markers. An hs-MSI score was calculated representing the percentage of unstable markers. Results The hs-MSI score was significantly higher in CMMRD blood samples when compared with controls in the training cohort (p<0.001). This finding was confirmed in the validation set, reaching 100% specificity and sensitivity. Higher hs-MSI scores were detected in biallelic MSH2 carriers (n=5) compared with MSH6 carriers (n=15). The hs-MSI analysis did not detect a difference between LS and control blood samples (p=0.564). Conclusions The hs-MSI approach is a valuable tool for CMMRD diagnosis, especially in suspected patients harbouring MMR variants of unknown significance or non-detected biallelic germline mutations

    A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes

    No full text
    Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome
    corecore