8 research outputs found

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio

    Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes

    No full text
    Abstract Background Microbiome/host interactions describe characteristics that affect the host's health. Shotgun metagenomics includes sequencing a random subset of the microbiome to analyze its taxonomic and metabolic potential. Reconstruction of DNA fragments into genomes from metagenomes (called metagenome-assembled genomes) assigns unknown fragments to taxa/function and facilitates discovery of novel organisms. Genome reconstruction incorporates sequence assembly and sorting of assembled sequences into bins, characteristic of a genome. However, the microbial community composition, including taxonomic and phylogenetic diversity may influence genome reconstruction. We determine the optimal reconstruction method for four microbiome projects that had variable sequencing platforms (IonTorrent and Illumina), diversity (high or low), and environment (coral reefs and kelp forests), using a set of parameters to select for optimal assembly and binning tools. Methods We tested the effects of the assembly and binning processes on population genome reconstruction using 105 marine metagenomes from 4 projects. Reconstructed genomes were obtained from each project using 3 assemblers (IDBA, MetaVelvet, and SPAdes) and 2 binning tools (GroopM and MetaBat). We assessed the efficiency of assemblers using statistics that including contig continuity and contig chimerism and the effectiveness of binning tools using genome completeness and taxonomic identification. Results We concluded that SPAdes, assembled more contigs (143,718 ± 124 contigs) of longer length (N50 = 1632 ± 108 bp), and incorporated the most sequences (sequences-assembled = 19.65%). The microbial richness and evenness were maintained across the assembly, suggesting low contig chimeras. SPAdes assembly was responsive to the biological and technological variations within the project, compared with other assemblers. Among binning tools, we conclude that MetaBat produced bins with less variation in GC content (average standard deviation: 1.49), low species richness (4.91 ± 0.66), and higher genome completeness (40.92 ± 1.75) across all projects. MetaBat extracted 115 bins from the 4 projects of which 66 bins were identified as reconstructed metagenome-assembled genomes with sequences belonging to a specific genus. We identified 13 novel genomes, some of which were 100% complete, but show low similarity to genomes within databases. Conclusions In conclusion, we present a set of biologically relevant parameters for evaluation to select for optimal assembly and binning tools. For the tools we tested, SPAdes assembler and MetaBat binning tools reconstructed quality metagenome-assembled genomes for the four projects. We also conclude that metagenomes from microbial communities that have high coverage of phylogenetically distinct, and low taxonomic diversity results in highest quality metagenome-assembled genomes

    Additional file 2: Figure S1. of Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes

    No full text
    Microbial diversity in the 4 microbiome projects. Representation of microbial diversity using, (a) genus richness, (b) genus evenness, (c) Shannon diversity, and (d) Simpson diversity of the four projects, which are represented on the x axis. The box represents 50% of the data ranges around the median. The outliers for each case are represented as black dots. (DOCX 167 kb

    The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge

    No full text
    BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of\ua0extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract
    corecore