19 research outputs found

    Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds

    Get PDF
    Structurally and mechanically similar to the extracellular matrix (ECM), biomimetic hydrogels offer a number of opportunities in medical applications. However, the generation of synthetic microenvironments that simulate the effects of natural tissue niches on cell growth and differentiation requires new methods to control hydrogel feature resolution, biofunctionalization and mechanical properties. Here we show how these goals can be achieved by using a pullulan-based hydrogel, engineered in composition and server as cell-adhesive hydrogel, 3D photo-printable in dimension, ranging from the macro- to the micro-scale dimensions, and of tunable mechanical properties. For this, we used absorbers that limit light penetration, achieving 3D patterning through stereolithography with feature vertical resolution of 200 μm and with overall dimension up to several millimeters. Furthermore, we report the fabrication of 3D pullulan-modified hydrogels by two-photon lithography, with sub-millimetric dimensions and minimum feature sizes down to some microns. These materials open the possibility to produce multiscale printed scaffolds that here we demonstrate to be inert for cell adhesion, but biologically compatible and easily functionalizable with cell adhesive proteins. Under these conditions, successful cell cultures were established in 2D and 3D. Keywords: Hydrogel, Biomaterials, Polysaccharide, Pullulan, 3D printing, Two photon laser lithography, Mesenchymal stromal cell

    Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ

    Get PDF
    The ability to induce autologous tissue-specific stem cells in culture could have a variety of applications in regenerative medicine and disease modeling. Here we show that transient expression of exogenous YAP or its closely related paralogue TAZ in primary differentiated mouse cells can induce conversion to a tissue-specific stem/progenitor cell state. Differentiated mammary gland, neuronal, and pancreatic exocrine cells, identified using a combination of cell sorting and lineage tracing approaches, efficiently convert to proliferating cells with properties of stem/progenitor cells of their respective tissues after YAP induction. YAP-induced mammary stem/progenitor cells show molecular and functional properties similar to endogenous MaSCs, including organoid formation and mammary gland reconstitution after transplantation. Because YAP/TAZ function is also important for self-renewal of endogenous stem cells in culture, our findings have implications for understanding the molecular determinants of the somatic stem cell state

    Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties

    Get PDF
    Defining the interplay between the genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavour in cancer biology. We found that receptor tyrosine kinase (RTK)–Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumour precursors, in a process requiring increased force transmission between oncogene-expressing cells and their surrounding extracellular matrix. Microenvironments approximating the normal softness of healthy tissues, or blunting cellular mechanotransduction, prevent oncogene-mediated cell reprogramming and tumour emergence. However, RTK–Ras oncogenes empower a disproportional cellular response to the mechanical properties of the cell’s environment, such that when cells experience even subtle supra-physiological extracellular-matrix rigidity they are converted into tumour-initiating cells. These regulations rely on YAP/TAZ mechanotransduction, and YAP/TAZ target genes account for a large fraction of the transcriptional responses downstream of oncogenic signalling. This work lays the groundwork for exploiting oncogenic mechanosignalling as a vulnerability at the onset of tumorigenesis, including tumour prevention strategies

    YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches

    No full text
    Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/ TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials

    A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors

    Get PDF
    Key cellular decisions, such as proliferation or growth arrest, typically occur at spatially defined locations within tissues. Loss of this spatial control is a hallmark of many diseases, including cancer. Yet, how these patterns are established is incompletely understood. Here, we report that physical and architectural features of a multicellular sheet inform cells about their proliferative capacity through mechanical regulation of YAP and TAZ, known mediators of Hippo signaling and organ growth. YAP/TAZ activity is confined to cells exposed to mechanical stresses, such as stretching, location at edges/curvatures contouring an epithelial sheet, or stiffness of the surrounding extracellular matrix. We identify the F-actin-capping/severing proteins Cofilin, CapZ, and Gelsolin as essential gatekeepers that limit YAP/TAZ activity in cells experiencing low mechanical stresses, including contact inhibition of proliferation. We propose that mechanical forces are overarching regulators of YAP/TAZ in multicellular contexts, setting responsiveness to Hippo, WNT, and GPCR signaling
    corecore