67 research outputs found
Divergence of duplicated genes by repeated partitioning of splice forms and subcellular localization
Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the alpha WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins
Automated Update, Revision, and Quality Control of the Maize Genome Annotations Using MAKER-P Improves the B73 RefGen_v3 Gene Models and Identifies New Genes
The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-P to update and revise the maize (Zea mays) B73 RefGen_v3 annotation build (5b+) in less than 3 h using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build, added additional untranslated regions to 1,393 5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of large and diverse evidence data sets), identified 104,215 pseudogene fragments, and created an additional 2,522 noncoding gene annotations. We also describe a method for de novo training of MAKER-P for the annotation of newly sequenced grass genomes. Collectively, these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes
- …