23 research outputs found

    Association between intrarenal arterial resistance and diastolic dysfunction in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In comparison to the well established changes in compliance that occur at the large vessel level in diabetes, much less is known about the changes in compliance of the cardiovascular system at the end-organ level. The aim of this study was therefore to examine whether there was a correlation between resistance of the intrarenal arteries of the kidney and compliance of the left ventricle, as estimated by measurements of diastolic function, in subjects with type 2 diabetes.</p> <p>Methods</p> <p>We studied 167 unselected clinic patients with type 2 diabetes with a kidney duplex scan to estimate intrarenal vascular resistance, i.e. the resistance index (RI = peak systolic velocity-minimum diastolic velocity/peak systolic velocity) and a transthoracic echocardiogram (TTE) employing tissue doppler studies to document diastolic and systolic ventricular function.</p> <p>Results</p> <p>Renal RI was significantly higher in subjects with diastolic dysfunction (0.72 ± 0.05) when compared with those who had a normal TTE examination (0.66 ± 0.06, p < 0.01). Renal RI values were correlated with markers of diastolic dysfunction including the E/Vp ratio (r = 0.41, p < 0.001), left atrial area (r = 0.36, p < 0.001), the E/A ratio (r = 0.36, p < 0.001) and the E/E' ratio (r = 0.31, p < 0.001). These associations were independent of systolic function, hypertension, the presence and severity of chronic kidney disease, the use of renin-angiotensin inhibitors and other potentially confounding variables.</p> <p>Conclusion</p> <p>Increasing vascular resistance of the intrarenal arteries was associated with markers of diastolic dysfunction in subjects with type 2 diabetes. These findings are consistent with the hypothesis that vascular and cardiac stiffening in diabetes are manifestations of common pathophysiological mechanisms.</p

    Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    Get PDF
    Background: There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians

    Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy

    No full text
    NF-κB-dependent pathways play an important role in macrophage infiltration and kidney injury. NF-κB is regulated by angiotensin II (AII). However, the role of this pathway in diabetic nephropathy has not been clearly delineated. First, the activation of NF-κB, monocyte chemoattractant protein-1 (MCP-1), and macrophage infiltration in the diabetic kidney were explored, in a temporal manner. The active subunit of NF-κB, p65, was elevated in the diabetic animals in association with increased MCP-1 gene expression and macrophage infiltration. Second, the effects of treatment for 4 wk with the AII type 1 receptor antagonist valsartan, the AII type 2 receptor antagonist PD123319, or pyrrolidine dithiocarbamate, an inhibitor of NF-κB and on these parameters were assessed. These treatments were associated with a reduction in p65 activation, MCP-1 gene expression, and macrophage infiltration. These findings demonstrate a role for activation of NF-κB, in particular the p65 subunit, in the pathogenesis of early renal macrophage infiltration in experimental diabetes. In the context of the known proinflammatory effects of AII, it is postulated that the renoprotection conferred by angiotensin II receptor antagonism is at least partly related to the inhibition of NF-κB-dependent pathways
    corecore