5 research outputs found

    The impact of catchment areas in predicting bus journeys

    Get PDF
    The catchment area along a bus route is key in predicting bus journeys. In particular, the aggregated number of households within the catchment area are used in the prediction model. The model uses other factors, such as head-way, day-of-week and others. The focus of this study was to classify types of catchment areas and analyse the impact of varying their sizes on the quality of predicting the number of bus passengers. Machine Learning techniques: Random Forest, Neural Networks and C5.0 Decision Trees, were compared regarding solution quality of predictions. The study discusses the sensitivity of catchment area size variations. Bus routes in the county Surrey in the United Kingdom were used to test the quality of the methods. The findings show that the quality of predicting bus journeys depends on the size of the catchment area

    A Hybrid Architecture (CO-CONNECT) to Facilitate Rapid Discovery and Access to Data Across the United Kingdom in Response to the COVID-19 Pandemic: Development Study.

    Get PDF
    BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintaining patient confidentiality and local governance procedures

    CO-CONNECT: A hybrid architecture to facilitate rapid discovery and access to UK wide data in the response to the COVID-19 pandemic

    Get PDF
    BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintaining patient confidentiality and local governance procedures.</p
    corecore