25,882 research outputs found
Exact asymptotic behavior of magnetic stripe domain arrays
The classical problem of magnetic stripe domain behavior in films and plates
with uniaxial magnetic anisotropy is treated. Exact analytical results are
derived for the stripe domain widths as function of applied perpendicular
field, , in the regime where the domain period becomes large. The stripe
period diverges as , where is the critical (infinite
period) field, an exact result confirming a previous conjecture. The
magnetization approaches saturation as , a behavior which
compares excellently with experimental data obtained for a m thick
ferrite garnet film. The exact analytical solution provides a new basis for
precise characterization of uniaxial magnetic films and plates, illustrated by
a simple way to measure the domain wall energy. The mathematical approach is
applicable for similar analysis of a wide class of systems with competing
interactions where a stripe domain phase is formed.Comment: 4 pages, 4 figure
Josephson scanning tunneling microscopy
We propose a set of scanning tunneling microscopy experiments in which the
surface of superconductor is scanned by a superconducting tip. Potential
capabilities of such experimental setup are discussed. Most important
anticipated results of such an experiment include the position-resolved
measurement of the superconducting order parameter and the possibility to
determine the nature of the secondary component of the order parameter at the
surface. The theoretical description based on the tunneling Hamiltonian
formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Dynamics of Spontaneous Magnetization Reversal in Exchange Biased Heterostructures
The dependence of thermally induced spontaneous magnetization reversal on
time-dependent cooling protocols was studied. Slower cooling and longer waiting
close to the N\`{e}el temperature of the antiferromagnet () enhances the
magnetization reversal. Cycling the temperature around leads to a thermal
training effect under which the reversal magnitude increases with each cycle.
These results suggest that spontaneous magnetization reversal is energetically
favored, contrary to our present understanding of positive exchange bias
Quantal Density Functional Theory of Degenerate States
The treatment of degenerate states within Kohn-Sham density functional theory
(KS-DFT) is a problem of longstanding interest. We propose a solution to this
mapping from the interacting degenerate system to that of the noninteracting
fermion model whereby the equivalent density and energy are obtained via the
unifying physical framework of quantal density functional theory (Q-DFT). We
describe the Q-DFT of \textit{both} ground and excited degenerate states, and
for the cases of \textit{both} pure state and ensemble v-representable
densities. This then further provides a rigorous physical interpretation of the
density and bidensity energy functionals, and of their functional derivatives,
of the corresponding KS-DFT. We conclude with examples of the mappings within
Q-DFT.Comment: 10 pages. minor changes made. to appear in PR
Measurement of an Exceptionally Weak Electron-Phonon Coupling on the Surface of the Topological Insulator BiSe Using Angle-Resolved Photoemission Spectroscopy
Gapless surface states on topological insulators are protected from elastic
scattering on non-magnetic impurities which makes them promising candidates for
low-power electronic applications. However, for wide-spread applications, these
states should have to remain coherent at ambient temperatures. Here, we studied
temperature dependence of the electronic structure and the scattering rates on
the surface of a model topological insulator, BiSe, by high resolution
angle-resolved photoemission spectroscopy. We found an extremely weak
broadening of the topological surface state with temperature and no anomalies
in the state's dispersion, indicating exceptionally weak electron-phonon
coupling. Our results demonstrate that the topological surface state is
protected not only from elastic scattering on impurities, but also from
scattering on low-energy phonons, suggesting that topological insulators could
serve as a basis for room temperature electronic devices.Comment: published version, 5 pages, 4 figure
Effect of Nonmagnetic Impurity in Nearly Antiferromagnetic Fermi Liquid: Magnetic Correlations and Transport Phenomena
In nearly antiferromagnetic (AF) metals such as high-Tc superconductors
(HTSC's), a single nonmagnetic impurity frequently causes nontrivial widespread
change of the electronic states. To elucidate this long-standing issue, we
study a Hubbard model with a strong onsite impurity potential based on an
improved fluctuation-exchange (FLEX) approximation, which we call the GV^I-FLEX
method. This model corresponds to the HTSC with dilute nonmagnetic impurity
concentration. We find that (i) both local and staggered susceptibilities are
strongly enhanced around the impurity. By this reason, (ii) the quasiparticle
lifetime as well as the local density of states (DOS) are strongly suppressed
in a wide area around the impurity (like a Swiss cheese hole), which causes the
``huge residual resistivity'' beyond the s-wave unitary scattering limit. We
stress that the excess quasiparticle damping rate caused by impurities has
strong momentum-dependence due to non-s-wave scatterings induced by many-body
effects, so the structure of the ``hot spot/cold spot'' in the host system
persists against impurity doping. This result could be examined by the ARPES
measurements. In addition, (iii) only a few percent of impurities can causes a
``Kondo-like'' upturn of resistivity () at low temperatures when
the system is very close to the AF quantum critical point (QCP). The results
(i)-(iii) obtained in the present study, which cannot be derived by the simple
FLEX approximation, naturally explains the main impurity effects in HTSC's. We
also discuss the impurity effect in heavy fermion systems and organic
superconductors.Comment: 22 pages, to be published in PR
A new approach to the inverse problem for current mapping in thin-film superconductors
A novel mathematical approach has been developed to complete the inversion of
the Biot-Savart law in one- and two-dimensional cases from measurements of the
perpendicular component of the magnetic field using the well-developed
Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is
provided in great detail to allow a straightforward implementation as opposed
to those found in the literature. Our new approach also refines our previous
results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and
streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)]
deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys.
65, 361 (1989)]. We also verify and streamline the iterative technique, which
was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)]
to account for in-plane magnetic fields caused by the bending of the applied
magnetic field due to the demagnetising effect. After testing on
magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film,
we show that the procedure employed is effective
- …