30,950 research outputs found
Hierarchical ResNeXt Models for Breast Cancer Histology Image Classification
Microscopic histology image analysis is a cornerstone in early detection of
breast cancer. However these images are very large and manual analysis is error
prone and very time consuming. Thus automating this process is in high demand.
We proposed a hierarchical system of convolutional neural networks (CNN) that
classifies automatically patches of these images into four pathologies: normal,
benign, in situ carcinoma and invasive carcinoma. We evaluated our system on
the BACH challenge dataset of image-wise classification and a small dataset
that we used to extend it. Using a train/test split of 75%/25%, we achieved an
accuracy rate of 0.99 on the test split for the BACH dataset and 0.96 on that
of the extension. On the test of the BACH challenge, we've reached an accuracy
of 0.81 which rank us to the 8th out of 51 teams
A progressive diagonalization scheme for the Rabi Hamiltonian
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit
interacting with a single-mode radiation field via a dipole interaction, is
proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly
using a progressive scheme that involves a finite set of one variable
polynomial equations. The scheme is especially efficient for lower part of the
spectrum. Some low-lying energy levels of the model with several sets of
parameters are calculated and compared to those provided by the recently
proposed generalized rotating-wave approximation and full matrix
diagonalization.Comment: 8pages, 1 figure, LaTeX. Accepted for publication in J. Phys. B: At.
Mol. Opt. Phy
Induction of WNT16 via peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis
Osteoarthritis (OA) is a progressive joint disease that causes significant disability and pain and for which there are limited treatment options. We posit that delivery of anabolic factors that protect and maintain cartilage homeostasis will halt or retard OA progression. We employ a peptide-based nanoplatform to deliver Wingless and the name Int-1 (WNT) 16 messenger RNA (mRNA) to human cartilage explants. The peptide forms a self-assembled nanocomplex of approximately 65 nm in size when incubated with WNT16 mRNA. The complex is further stabilized with hyaluronic acid (HA) for enhanced cellular uptake. Delivery of peptide-WNT16 mRNA nanocomplex to human cartilage explants antagonizes canonical β-catenin/WNT3a signaling, leading to increased lubricin production and decreased chondrocyte apoptosis. This is a proof-of-concept study showing that mRNA can be efficiently delivered to articular cartilage, an avascular tissue that is poorly accessible even when drugs are intra-articularly (IA) administered. The ability to accommodate a wide range of oligonucleotides suggests that this platform may find use in a broad range of clinical applications
Peptide-siRNA nanotherapeutics in arthritis
RNA interference (RNAi) is a process that involves the delivery of small single stranded RNA molecules into mammalian cells, resulting in the sequence-specific cleavage of complementary mRNA and the silencing of specific gene expression. These small RNA molecules called small interfering RNAs (siRNAs) are the focus of intense research due to their potential therapeutic uses in various disease processes ranging from cancer to autoimmune and inflammatory conditions. However, critical barriers to the delivery of siRNAs in vivo remain. “Off-target ” effects due to the suppression of closely related or unrelated genes might lead to unintended and potentially harmful host responses. Additionally, unprotected siRNAs are highly unstable once introduced into the circulation, with half-life of less than ten minutes
Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level
We have observed marked transport anisotropy in short period (a=92 nm)
unidirectional lateral superlattices around filling factors nu=5/2 and 7/2:
magnetoresistance shows a sharp peak for current along the modulation grating
while a dip appears for current across the grating. By altering the ratio a/l
(with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron
density n_e, it is shown that the nu=5/2 anisotropic features appear in the
range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous
at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its
height/depth up to 250 mK. Tilt experiments reveal that the structures are
slightly enhanced by an in-plane magnetic field B_| perpendicular to the
grating but are almost completely destroyed by B_| parallel to the grating. The
observations suggest the stabilization of a unidirectional charge-density-wave
or stripe phase by weak external periodic modulation at the second Landau
level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and
reference
An assessment of the strength of knots and splices used as eye terminations in a sailing environment
Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified
Anti-correlation and subsector structure in financial systems
With the random matrix theory, we study the spatial structure of the Chinese
stock market, American stock market and global market indices. After taking
into account the signs of the components in the eigenvectors of the
cross-correlation matrix, we detect the subsector structure of the financial
systems. The positive and negative subsectors are anti-correlated each other in
the corresponding eigenmode. The subsector structure is strong in the Chinese
stock market, while somewhat weaker in the American stock market and global
market indices. Characteristics of the subsector structures in different
markets are revealed.Comment: 6 pages, 2 figures, 4 table
- …