9,836 research outputs found
Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning
Developing a safe and efficient collision avoidance policy for multiple
robots is challenging in the decentralized scenarios where each robot generate
its paths without observing other robots' states and intents. While other
distributed multi-robot collision avoidance systems exist, they often require
extracting agent-level features to plan a local collision-free action, which
can be computationally prohibitive and not robust. More importantly, in
practice the performance of these methods are much lower than their centralized
counterparts.
We present a decentralized sensor-level collision avoidance policy for
multi-robot systems, which directly maps raw sensor measurements to an agent's
steering commands in terms of movement velocity. As a first step toward
reducing the performance gap between decentralized and centralized methods, we
present a multi-scenario multi-stage training framework to find an optimal
policy which is trained over a large number of robots on rich, complex
environments simultaneously using a policy gradient based reinforcement
learning algorithm. We validate the learned sensor-level collision avoidance
policy in a variety of simulated scenarios with thorough performance
evaluations and show that the final learned policy is able to find time
efficient, collision-free paths for a large-scale robot system. We also
demonstrate that the learned policy can be well generalized to new scenarios
that do not appear in the entire training period, including navigating a
heterogeneous group of robots and a large-scale scenario with 100 robots.
Videos are available at https://sites.google.com/view/drlmac
Formation of in-volume nanogratings with sub-100 nm periods in glass by femtosecond laser irradiation
We present direct experimental observation of the morphological evolution
during the formation of nanogratings with sub-100-nm periods with the
increasing number of pulses. Theoretical simulation shows that the constructive
interference of the scattering light from original nanoplanes will create an
intensity maximum located between the two adjacent nanoplanes, resulting in
shortening of the nanograting period by half. The proposed mechanism enables
explaining the formation of nanogratings with periods beyond that predicted by
the nanoplasmonic model.Comment: 4 pages, 3 figure
Comparison of two cardiac output monitors, qCO and LiDCO, during general anesthesia
Background: Optimization of cardiac output (CO) has been evidenced to reduce postoperative complications and to expedite the recovery. Likewise, CO and other dynamic cardiac parameters can describe the systemic blood flow and tissue oxygenation state and can be useful in different clinical fields. This study aimed to validate the qCO monitor (Quantium Medical, Barcelona, Spain), a new device to estimate CO and other related parameters in a continuous, fully non-invasive way using advanced digital signal processing of impedance cardiography.
Methods: The LiDCOrapidv2 (LiDCO Ltd, London, UK) was used to compare the performance of the qCO in 15 patients during major surgery under general anesthesia. Full surgeries were recorded and cardiac output obtained by both devices was compared by using correlation and Bland-Altman analysis.
Results: The Bland-Altman analysis showed sufficient agreement with a mean bias of -0.03 ± 0.71 L/min.
Conclusions: The findings showed that both systems offered comparable values and thus the non-invasive measurement of CO with qCO is a promising, feasible method. Further investigation will be required to validate this new device against calibrated devices and outcome studies would also be highly recommended.Postprint (author's final draft
- …